• Title/Summary/Keyword: Surfactant-enhanced Remediation

Search Result 48, Processing Time 0.029 seconds

Feasibility study on remediation for railway contaminated soil with waste-lubricant (윤활유 유래 철도오염 토양의 정화 타당성 연구)

  • Baek, Ki-Tae;Shin, Min-Chul;Park, Sung-Woo;Ryu, Byung-Gon;Lee, Jae-Young
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1229-1235
    • /
    • 2007
  • Railway-contaminated soil is categorized by total petroleum hydrocarbon(TPH)-related contamination and heavy-metal contamination. The sources of TPH are diesel and lubricant. In this study, the feasibility of soil washing, chemical oxidation and ultra-sonication were investigated to treat lubricant-contaminated railway soil. tergitol, a non-ionic surfactant, was investigated as a washing agent. However, it is not effective to remove lubricant from soil even though tergitol is most effective washing agent for diesel-contaminated soil. Addition of alcohols with surfactant enhanced slightly washing efficiency of the lubricant-contaminated soil. To remediate railway-contaminated soil, source of pollution should be considered.

  • PDF

Use of Biosurfactant for the Removal of Organic Pollutants in Soil/Groundwater (바이오 계면활성제에 의한 토양/지하수내 유기성 오염물질 제거)

  • Ko, Seok-Oh;Yoon, Seok-Pyo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.193-201
    • /
    • 2000
  • Partitioning of hydrophobic organic compounds (HOCs) to a biosurfactant, hydroxypropyl-${\beta}$-cyclodextrin (HPCD), was conducted to evaluate the feasibility of using HPCD to remove HOCs from soil/groundwater. HOC partitioning to HPCD was very fast, with over 95% of the complexation occurring within 10 min. Some influence of solution chemistry and HOC concentration on HOC-HPCD complex formation coefficients was observed. HPCD sorption on soil as quantified by both a fluorescence technique and total organic carbon measurements was negligible, indicating no significant affinity of HPCD for the solid phase. Although the HOC solubilization capability of HPCD was lower than that of synthetic surfactants such as SDS and Tween 80, HPCD can be effective in removing sorbed HOCs from a model subsurface environment, primarily because of its negligible sorption to the solid phase (i.e., all the HPCD added facilitates HOC elution). However, in contrast with conventional surfactants, HPCD becomes relatively less effective for HOC partitioning with increasing HOC size and hydrophobicity. Therefore, comparisons between HPCD and synthetic surfactants for enhanced remediation applications must consider the specific HOC(s) present and the potential for surfactant material losses to the solid phase, as well as other more generally recognized considerations such as material costs and potential toxicological effects.

  • PDF

Effects of Additives on Soil Washing Efficiency for Mixed Surfactants (혼합 계면활성제에 적용된 각종 첨가제가 토양세척 효율에 미치는 영향)

  • Choi, Sang-Il;Jang, Min;Hwang, Kyung-Yub;Ryoo, Doo-Hyun
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.1
    • /
    • pp.65-74
    • /
    • 1998
  • To enhance the washing efficiency of soil polluted by hydrophobic organic compounds, the effects of electrolytes and monomeric organic additives on micelle formation and washing efficiency of mixed surfactant solutions were investigated in this study. The surface tensions and critical micelle concentrations(CMCs) of the single and mixed surfactant solutions[$POE_5$/SDS] supplemented by NaCl were measured to investigate the effects on washing efficiency, and the composition ratios of surfactants and NaCl were optimized for the efficient soil washing system. As the mixing ratio of $POE_5$/SDS was increased to 80%, the mixed surfactant with 0.01M NaCl showed more proportional increase of washing efficiency than the mixed surfactant without any salts. The 3% solution of $POE_5$ and SDS(80%/2o%) with 0.01M NaCl showed the washing efficiency of 90%. However, the washing efficiency was not enhanced by NaCl addition to the single surfactant solution of $POE_5$. The CMC of SDS(0.049%) was higher than that of $POE_5$(0.016%), but the CMCs of mixed surfactants were decreased as the mixing ratio of $POE_5$ was increased. Alcohols having longer chain and branched carbon chain were found to be desirable for the soil washing additives.

  • PDF

Effect of Surfactant Types on Washing of Diesel-contaminated Soil (디젤 오염 토양 세척시 계면활성제 종류의 영향)

  • Yang, Jung-Seok;Lee, You-Jin;Kim, Seong-Hye;Shin, Hyun-Jae;Yang, Ji-Won
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.3
    • /
    • pp.8-14
    • /
    • 2008
  • The effects of surfactant types and the ratio of nonionic and anionic surfactants on the washing of diesel contaminated soil were investigated. In batch tests, the nonionic surfactant, which has HLB within 12-13, showed a high diesel removal efficiency and Tergitol 15-S-7 (T15S7) with 20 g/L concentration exhibited the highest removal efficiency of 79-88% among the tested nonionic surfactants. Anionic surfactants, in general, showed lower removal efficiency than nonionic surfactants. In case of mixed surfactant system, the removal efficiency increased with nonionic surfactant concentration. With mixed surfactants of T15S7 and SDS as 3 : 1 ratio, diesel removal was enhanced to 76% with 10 g/L of the mixed surfactants. These results could be used in the selection of proper surfactants for remediation of diesel contaminated soils.

Optimizing Surfactant-Enhanced Solubilzation of LNAPL from Soil in Saturated Zone (포화지층내 저비중 비수용성 유기용매의 용해제거를 위한 계면활성제법의 최적 조작인자 도출)

  • 이재원;박규홍;박준범
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.153-164
    • /
    • 1999
  • The solubilization of BTEX was evaluated in aqueous surfactant solutions with and without several additives. Anionic surfactant(Sodium Dodecyl Sulfate, SDS) and nonionic surfactants (NEODOL(equation omitted)25-3 and $SOFTANOL\circledR-90$ were used as test surfactants. The effects of surfactant HLB(Hydrophile-Lipophile Balance) Number and hydrocarbon molar volume and polarity of BTEX on the MSR(Molar Solubilization Ratio), micelle-water partition coefficient of BTEX, and CMC(C,itical Micelle Concentration) were investigated. Optimizing treatment conditions applicable to enhanced solubilization was also studied by manupulating salinity or electrolyte control with additives of ethyl alcohol, hydrotrope, and electrolyte solution. The most effective surfactant for solubilization was found $SOFTANOL\circledR-90$, since HLB number of 13.6 is similar to those values of BTEX ranging between 11.4 and 12.2, which was also proved experimentally. Ethyl alchohol of 3% was the most effective additives in reducing CMC and improving solubilization among the conditions using SDS, NEODOL(equation omitted)25-3, and $SOFTANOL\circledR-90$ with three additives. The partitioning of BTEX between surfactant micelles and aqueous solutions was characterized by a mole fraction micelle-phase/aqueous phase partion coefficient, $K_m$. Values of log $K_m$. for BTEX compounds in surfactant solutions of this study range from 2.95 to 3.76(100mM SDS) and 2.95 to 3.49(117mM $SOFTANOL\circledR-90$. Log $K_m$ appears to be a linear function of log $K_{ow}$ for SDS and $SOFTANOL\circledR-90$. A knowledge of partitioning of BTEX in aqueous surfactant system can be a prerequisite for the understanding of the behavior of hydrophobic organic compounds in soil-water systems in which surfactants play a role in remediation of contaminated soil and facilitated transport.

  • PDF

Feasibility Study on Remediation for Railroad-contaminated Soil with Waste-lubricant (윤활유 유래 철도 오염토양의 정화방법 연구)

  • Park, Sung-Woo;Shin, Min-Chul;Jeon, Chil-Sung;Baek, Ki-Tae;Lee, Jae-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.2
    • /
    • pp.30-35
    • /
    • 2008
  • In this study, the feasibility of soil washing, chemical oxidation and sonication was investigated to treat lubricantcontaminated railroad soil. Tergitol, a non-ionic surfactant, was used as a washing agent with or without iso-propyl acohol as a cosolvent. However, it was not effective to remove lubricant from soil even though tergitol was the most effective washing agent for diesel-contaminated soil. The cosolvent reduced the overall washing efficiency. Chemical oxidation removed 30% of lubricant from contaminated soil. Soil washing after chemical oxidation extracted additionally 16-17% of lubricant. Sonication enhanced-soil washing showed enhanced overall efficiency of soil washing. Lubricant-contaminated soil should be remediated by the other technology used for diesel-contaminated soil.

Surface Tension-Water Saturation Relationship as the Function of Soil Particle Size and Aquifer Depth During Groundwater Air Sparging (대수층 폭기공정에서 토양입경 및 지하수 깊이에 따른 표면장력과 함수율의 상관관계)

  • Kim, Heon-Ki;Kwon, Han-Joon
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.6
    • /
    • pp.65-70
    • /
    • 2009
  • Reduction of groundwater surface tension prior to air sparging (SEAS, surfactant-enhanced air sparging) was known to increase air saturation in the aquifer under influence, possibly enhancing the removal rates of volatile contaminants. Although SEAS was known to be efficient for increasing air saturation, little information is available for different hydrogeological settings including soil particle sizes and the depth of aquifer. We investigated water saturations in the sparging influence zone during SEAS using one-dimensional column packed with sands of different particle sizes and different aquifer depths. An anionic surfactant was used to suppress the surface tension of water. Two different sands were used; the air entry pressures of the sands were measured to be $15.0\;cmH_2O$, and $36.3\;cmH_2O$, respectively. No significant difference was observed in the water saturation-surface tension relationship for sands with different particle sizes. As the surface tension decreased, the water saturation decreased to a lowest point and then it increased with further decrease in the surface tension. Both sands reached their lowest water saturations when the surface tension was set approximately at 42 dyne/cm. SEAS was conducted at three different aquifer depths; 41 cm, 81 cm, and 160 cm. Water saturation-surface tension relationship was consistent regardless of the aquifer depth. The size of sparging influence zone during SEAS, measured using two-dimensional model, was found to be similar to the changes in air saturation, measured using one-dimensional model. Considering diverse hydrogeological settings where SEAS to be applied, the results here may provide useful information for designing SEAS process.

A Study on Remediation of Diesel-Contaminated Soil by Biosurfactant- Enhanced Soil Washing (생물계면활성제를 이용한 디이젤 오염토양세척기술에 관한 연구)

  • 문혜준;임영경;김윤관;주춘성;방기연;정욱진;이승우
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.2
    • /
    • pp.13-22
    • /
    • 2002
  • Soil washing by surfactants is a technology to enhance mobilization and subsequent degradation of oil pollutants by reducing the surface tension of pollutants which is combined with soil. In this study, biosurfactant, rhamnolipid was produced from Pseudomonas aemginosa ATCC 9027 which had an excellent biodegradable activity in soil without causing secondary pollution. Effects of chemical surfactants on the removal of diesel from diesel-contaminated soil were compared to those of biosurfactants including rhamnolipid. Diesel removal efficiency by rhamnolipid extracted from P. aeruginosa culture broth was over 95% in both batch and column washing test in 5,000ppm diesel-contaminated soil with 1% surfactants after washing for 24 hours. On the contrary, the results of chemical surfactants were below 50∼80%, The chemical surfactants with HLB value(8∼15) showed more then 75% efficiency of diesel removal. But, when the HLB values were below 8 or over 15. their efficiency were observed as less then 60% of diesel removal. Rhamnolipid, biologically produced surfactants, may also be promising agent for enhancing diesel removal from contaminated soil.