• Title/Summary/Keyword: Surfactant solution

Search Result 560, Processing Time 0.025 seconds

Synthesis and Characterization of Electro-Active Poly(2-acrylamido-2-methylpropanesulfonic acid) Polymer Gel Actuator (전기활성 Poly(2-acrylamido-2-methylpropanesulfonic acid) 고분자 겔 구동기의 합성 및 특성분석)

  • 송영진;심우선;김홍경;김학길;최혁렬;김훈모;전재욱;이영관;남재도
    • Polymer(Korea)
    • /
    • v.25 no.5
    • /
    • pp.736-743
    • /
    • 2001
  • An electro- active polymer (EAP) (poly(2-acrylamido-2- methyl propane sulfonic acid), PAMPS) gel crosslinked with N,N-methylenebisacrylamide (MBAA) has been prepared by free radical polymerization in aqueous solution with potassium persulfate as initiator PAMPS gel was swollen in surfactant solution to substitute surfactant for using as actuator. PAMPS gel showed a large movement in the surfactant solution by electric field. PAMPS gel showed the reversible binding and fast response rate. Bending mechanism of gel is related to the cooperative process of hydrophobic interaction, swelling-deswelling of gel and the electrostatic attraction between anode (+) and the anions of PAMPS gel. The response rate of PAMPS gel was increased as the applied potential and the degree of cross-linkage were increased. The response rate was increased as the bending cycle was repeated, but it was decreased with increasing the gel thickness.

  • PDF

PFC Ultrasonic Decontamination Efficiency on the Various Types of Metal Specimens (금속 시편 형태에 따른 PEC 초음파 제염 성능)

  • Won Hui-Jun;Kim Gye-Nam;Jung Chung-Hun;Park Jin-Ho;Oh Won-Zin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.4
    • /
    • pp.293-300
    • /
    • 2005
  • Ultrasonic decontamination of the type 304 stainless steel specimen loosely contaminated with $Eu_2O_3$ powders was investigated. Decontamination factors (DFs) by the three kinds of ultrasonic media such as water, pure PFC (Pefluorocarbon, $C_7F_{16}$) and a mixed solution of $99.9\;vol\%\;PFC\;and\;0.1\;vol\%$ anionic surfactant were determined. The determined DF values were 20, 50 and 200, respectively. This significant difference in the decontamination factors for the different decontamination solution was well explained by the surface tension of the media as well as the interaction between the positively charged surface of $Eu_2O_3$ powders and the anionic surfactant. Ultrasonic decontamination behavior of the loosely contaminated metal specimens such as plate, pipe, welding specimen and crevice specimen in the mixed solution of PFC and anionic surfactant was also investigated. The contaminants were completely removed for the tested specimens except for the longest specimen. For 6-cm long pipe specimen, however, $98.5\%$ of the contaminants were removed.

  • PDF

Synthesis and Properties of Glycidyl Succinate Type Cationic Gemini Surfactant (2-메틸숙신산을 이용한 에스테르계 제미니 양이온 계면활성제의 합성 및 물성)

  • Park, Jong-Kwon;Kim, Won-Kyun;Jeong, Noh-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.312-319
    • /
    • 2013
  • This study is to do with the synthesis of glycidyl succinate cationic gemini surfactant. The gemini surfactant was synthesized with using 2-methyl disodium succinate, epichlorohydrine and N,N-dimethyl dodecyl amine. The target material was confirmed by FT-IR, $^1H$-NMR and was tested their properties. Surface active properties such as surface tension, evaluated cmc, emulsing properties, foaming properties were measured respectively at given conditions. The surface tensions for the aqueous solution of gemini surfactant were 33~34 dyne/cm and their cmc values evaluated by surface tension method were $10^{-4}{\sim}10^{-3}mol/L$. Emulsing properties of gemini surfactant was better in organic solvent and foaming power was confirmed good stability.

Synthesis of Monodisperse Magnetite Nanocrystallites Using Sonochemical Method (음향화학법을 이용한 균일한 나노 자성체의 합성)

  • Cho, Jun-Hee;Ko, Sang-Gil;Ahn, Yang-Kyu;Song, Ki-Chang;Choi, Eun-Jung
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.3
    • /
    • pp.163-167
    • /
    • 2006
  • Ultrasonic irradiation in a solution during the chemical reaction may accelerate the rate of the reaction and the crystallization at low temperature. We have synthesized nanometer sized magnetite particles using coprecipitation method, sonochemical method without surfactant, and sonochemical method with surfactant, in order to investigate the effect of ultrasonic irradiation and surfactant on the coprecipitates of metal ions. The size of the magnetite nanoparticles prepared by coprecipitation method, and sonochemical method without surfactant showed broad distributions. But we got uniform nanoparticles using a sonochemical method with oleic acid. The average size of the particles can be controlled by the ratio $R=[H_2O]/[surfactant]$. The size of the magnetite nanoparticles prepared by this method showed narrow distributions. We have characterized the nanoparticles using an X-ray diffraction (XRD), a superconducting quantum interference device (SQUID), and atomic force microscope (AFM). The size and distribution of the magnetite nanoparticles were measured by dynamic light scattering (DLS) method.

Relationship Between Dissolution Patterns of Carbamazepine Tablet and Dissolution Medium Composition (카르바마제핀 정제 용출패턴과 용출액 조성과의 상관성)

  • Lee, Hyeon-Tae;Kim, Jeong-Ho;Kim, Hyun-Joo;Sah, Hong-Kee
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.3
    • /
    • pp.185-192
    • /
    • 2004
  • The objective of this study was to evaluate the effects of surfactant type and concentration upon dissolution rates of carbamazepine from an immediate-release tablet. The dissolution media used in this study were aqueous solutions containing 0.1-2% sodium lauryl sulfate, cetyltrimethylammonium bromide, or polysorbate 80. The solubility of carbamazepine in the dissolution media was determined at first. A dissolution study was then conducted by using the USP dissolution apparatus II (paddle method) with an agitation rate of 75 rpm. Aliquots of the dissolution media were taken at predetermined time intervals, and the amount of carbamazepine dissolved was measured spectrophotometrically at 285 nm. The dissolution data obtained were fitted into a biphasic exponential equation with four parameters. Excellent correlations were observed between the experimental data and the theoretical ones predicted by the equation. This equation permitted the calculation of $T_{50%}$ (the time required for dissolving 50% of carbamazepine) under various experimental conditions. Differentiation of the equation also led to the attainment of dissolution rates at dissolution time points. The addition of a surfactant to an aqueous solution led to increasing the solubility of carbamazepine by 3- to 12-folds, depending upon its type and concentration. This event also resulted in enhancing the magnitude of a sink condition during the dissolution study. As a result, the dissolution rate of carbamazepine was affected by the aqueous surfactant concentration in a proportional manner. Subsequently, $T_{50%}$ values declined rapidly, as the surfactant concentration increased. Such effects were observed in decreasing order of sodium lauryl sulfate, cetyltirmethylammonium bromide, and polysorbate 80. These results clearly demonstrated that it was possible to tailor a dissolution rate and $T_{50%}$ of carbamazepine by manipulating the type and concentration of a surfactant. Relevant information would be beneficial to setting up dissolution specifications for poorly water-soluble drug products.

Effects of Diols on the foaming and emulsion properties in surfactant solutions

  • Lee, Giam;Oh, Seong-Geun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.488-498
    • /
    • 2022
  • The effects of 1,3-Butanediol, 1,2-Pentanediol, and 1,2-Hexanediol in surfactant solutions on cmc, surface tension, foaming and emulsifying properties were determined. The addition of diols in aqueous surfactant solution decreased cmc and surface tension, and enhanced the foaming and emulsifying power. This trend is more significant by the longer hydrocarbon chain length of the diols. This property was confirmed because the diol's alkyl chain and the hydrophobic interaction with the surfactant reduce the cohesive force of water and increase the interaction between the head groups of the surfactant at interface. In addition, MIC test was conducted to determine the preservative power of each diol, and as a result, the antibacterial activity was effective in the order of 1,2-HDO > 1,2-PDO > 1,3-BDO. The results of this study show that diol can be applied to cosmetics as an auxiliary surfactant and antibacterial agent.

Measurement of Isoelectric Point of Amine Oxide Zwitterionic Surfactant by QCM (Quartz Crystal Microbalance) (QCM (Quartz Crystal Microbalance)을 활용한 Amine Oxide 양쪽성 계면활성제의 등전점 측정에 관한 연구)

  • Kim, JiSung;Park, JunSeok;Lim, JongChoo
    • Applied Chemistry for Engineering
    • /
    • v.20 no.1
    • /
    • pp.9-14
    • /
    • 2009
  • A zwitterionic surfactant shows not only detergency but also softening effect since it shows characteristics of a nonionic or an anionic surfactant above an isoelectric point, while showing characteristics of a cationic surfactant below an isoelectric point. Therefore, a zwitterionic surfactant can serve as a dual function surfactant by a single molecule through the interconversion of cleaning and softening effects depending on pH of the aqueous solution. In this study, the dual function characteristics of an amine oxide zwitterionic surfactant were investigated by measuring the zeta potential and the isoelectric point using quartz crystal microbalance (QCM). In addition, the physical properties of an amine oxide surfactant such as critical micelle concentration, surface tension, interfacial tension, contact angle and viscosity were measured and phase behavior study was also performed. The isoelectric point of an amine oxide surfactant determined by zeta potential measurement was near 7.35 and that obtained by QCM experiment was about 7.4, where both results were found to be close to the value reported in the literature.

A Study on Synthesis of Glycidol Based Nonionic Surfactant (글리시돌을 원료로 한 비이온 계면활성제 합성에 관한 연구)

  • Lim, Jong Choo;Kim, Byeong Jo;Choi, Kyu Yong
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.282-291
    • /
    • 2012
  • The PGLE and PGLE3 nonionic surfactants were synthesized from the reaction between glycidol and lauryl acid and their structures were confirmed by $^1H$ and $^{13}C$ NMR analysis. The CMCs of PGLE and PGLE3 surfactants were found to be $3.59{\times}10^{-2}$ mol/L and $8.80{\times}10^{-2}$ mol/L respectively and the surface tensions at their CMC conditions were 26.09 mN/m and 28.68 mN/m respectively. Dynamic surface tension measurement has shown that the adsorption rate of surfactant molecules at the interface between air and surfactant solution was found to be relatively fast in both surfactant systems, presumably due to high mobility of surfactant molecules. The contact angles of PGLE and PGLE3 nonionic surfactants were $25.5^{\circ}$ and $9.5^{\circ}$ respectively. Dynamic interfacial tension measurement showed that both surfactant systems reached equilibrium in 20 minutes and the interfacial tensions at equilibrium condition in both systems were 0.42 mN/m and 0.53 mN/m respectively. The PGLE surfactant system has indicated higher foam stability than the PGLE3 surfactant system, which is consistent with surface tension measurement. The phase behavior experiments performed at $25{\sim}60^{\circ}C$ in systems containing nonionic surfactant, water, n-hydrocarbon oil and cosurfactant showed a lower phase or oil in water microemulsion in equilibrium with excess oil phase at all conditions investigated during this study.

Recovery of Silk Sericin from Soap-Alkaline Degumming Solution

  • Yang, Yesol;Lee, Sang Mi;Lee, Han Sol;Lee, Ki Hoon
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.27 no.1
    • /
    • pp.203-208
    • /
    • 2013
  • Sericin is usually abandoned after the degumming process. However, it could be a valuable bioresource if an economically efficient recovery process could be set up. In this study, sericin was recovered directly from the degummed waste solution by adding calcium chloride, which induced the precipitation of the surfactant, sodium oleate, by charge interaction. The recovery yield was maximum when 10% of calcium chloride was added. Further increase in the calcium chloride concentration induced the precipitation of sericin. The recovered sericin had a molecular weight distribution similar to that of the hot-water-extracted sericin; but some highmolecular- weight sericin could not be recovered. The secondary structure and amino acid composition of the recovered sericin were similar to those of conventional hot-water-extracted sericin. We expect that sericin recovered from the degummed waste solution could be an alternative to the hot-water-extracted sericin, which is widely used in various applications.

Chemical cleaning effects on properties and separation efficiency of an RO membrane

  • Tu, Kha L.;Chivas, Allan R.;Nghiem, Long D.
    • Membrane and Water Treatment
    • /
    • v.6 no.2
    • /
    • pp.141-160
    • /
    • 2015
  • This study aims to investigate the impacts of chemical cleaning on the performance of a reverse osmosis membrane. Chemicals used for simulating membrane cleaning include a surfactant (sodium dodecyl sulfate, SDS), a chelating agent (ethylenediaminetetraacetic acid, EDTA), and two proprietary cleaning formulations namely MC3 and MC11. The impact of sequential exposure to multiple membrane cleaning solutions was also examined. Water permeability and the rejection of boron and sodium were investigated under various water fluxes, temperatures and feedwater pH. Changes in the membrane performance were systematically explained based on the changes in the charge density, hydrophobicity and chemical structure of the membrane surface. The experimental results show that membrane cleaning can significantly alter the hydrophobicity and water permeability of the membrane; however, its impacts on the rejections of boron and sodium are marginal. Although the presence of surfactant or chelating agent may cause decreases in the rejection, solution pH is the key factor responsible for the loss of membrane separation and changes in the surface properties. The impact of solution pH on the water permeability can be reversed by applying a subsequent cleaning with the opposite pH condition. Nevertheless, the impacts of solution pH on boron and sodium rejections are irreversible in most cases.