Browse > Article
http://dx.doi.org/10.12989/mwt.2015.6.2.141

Chemical cleaning effects on properties and separation efficiency of an RO membrane  

Tu, Kha L. (Strategic Water Infrastructure Laboratory and GeoQuEST Research Centre, School of Civil, Mining, and Environmental Engineering, University of Wollongong)
Chivas, Allan R. (GeoQuEST Research Centre, School of Earth and Environmental Sciences, University of Wollongong)
Nghiem, Long D. (Strategic Water Infrastructure Laboratory and GeoQuEST Research Centre, School of Civil, Mining, and Environmental Engineering, University of Wollongong)
Publication Information
Membrane and Water Treatment / v.6, no.2, 2015 , pp. 141-160 More about this Journal
Abstract
This study aims to investigate the impacts of chemical cleaning on the performance of a reverse osmosis membrane. Chemicals used for simulating membrane cleaning include a surfactant (sodium dodecyl sulfate, SDS), a chelating agent (ethylenediaminetetraacetic acid, EDTA), and two proprietary cleaning formulations namely MC3 and MC11. The impact of sequential exposure to multiple membrane cleaning solutions was also examined. Water permeability and the rejection of boron and sodium were investigated under various water fluxes, temperatures and feedwater pH. Changes in the membrane performance were systematically explained based on the changes in the charge density, hydrophobicity and chemical structure of the membrane surface. The experimental results show that membrane cleaning can significantly alter the hydrophobicity and water permeability of the membrane; however, its impacts on the rejections of boron and sodium are marginal. Although the presence of surfactant or chelating agent may cause decreases in the rejection, solution pH is the key factor responsible for the loss of membrane separation and changes in the surface properties. The impact of solution pH on the water permeability can be reversed by applying a subsequent cleaning with the opposite pH condition. Nevertheless, the impacts of solution pH on boron and sodium rejections are irreversible in most cases.
Keywords
boron; reverse osmosis (RO); membrane cleaning; sodium dodecyl sulfate (SDS); ethylenediaminetetraacetic acid (EDTA);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Akin, O. and Temelli, F. (2011), "Probing the hydrophobicity of commercial reverse osmosis membranes produced by interfacial polymerization using contact angle, XPS, FTIR, FE-SEM and AFM", Desalination, 278(1-3), 387-396.   DOI   ScienceOn
2 Al-Amoudi, A. (2013), "Effect of chemical cleaning agents on virgin nanofiltration membrane as characterized by positron annihilation spectroscopy", Sep. Purif. Technol., 110, 51-56.   DOI
3 Al-Amoudi, A. and Lovitt, R.W. (2007), "Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency", J. Membr. Sci., 303(1-2), 4-28.   DOI   ScienceOn
4 Al-Amoudi, A., Williams, P., Mandale, S. and Lovitt, R.W. (2007), "Cleaning results of new and fouled nanofiltration membrane characterized by zeta potential and permeability", Sep. Purif. Technol., 54(2), 234-240.   DOI   ScienceOn
5 Al-Amoudi, A., Williams, P., Al-Hobaib, A.S. and Lovitt, R.W. (2008), "Cleaning results of new and fouled nanofiltration membrane characterized by contact angle, updated DSPM, flux and salts rejection", Appl. Surf. Sci., 254(13), 3983-3992.   DOI
6 Amar, N.B., Saidani, H., Palmeri, J. and Deratani, A. (2009), "Effect of temperature on the rejection of neutral and charged solutes by Desal 5 DK nanofiltration membrane", Desalination, 246(1-3), 294-303.   DOI
7 Ang, W.S., Lee, S. and Elimelech, M. (2006), "Chemical and physical aspects of cleaning of organic-fouled reverse osmosis membranes", J. Membr. Sci., 272(1-2), 198-210.   DOI
8 Bernstein, R., Belfer, S. and Freger, V. (2011), "Toward improved boron removal in RO by membrane modification: Feasibility and challenges", Environ. Sci. Technol., 45(8), 3613-3620.   DOI
9 Braghetta, A., DiGiano, F.A. and Ball, W.P. (1997), "Nanofiltration of natural organic matter: pH and ionic strength effects", J. Environ. Eng., ASCE, 123(7), 628-641.   DOI
10 Childress, A.E. and Elimelech, M. (1996), "Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes", J. Membr. Sci., 119(2), 253-268.   DOI
11 Childress, A.E. and Elimelech, M. (2000), "Relating nanofiltration membrane performance to membrane charge (electrokinetic) characteristics", Environ. Sci. Technol., 34(17), 3710-3716.   DOI
12 Elimelech, M. and Phillip, W.A. (2011), "The future of seawater desalination: Energy, technology, and the environment", Science, 333(6043), 712-717.   DOI   ScienceOn
13 Elimelech, M., Chen, W.H. and Waypa, J.J. (1994), "Measuring the zeta (electrokinetic) potential of reverse osmosis membranes by a streaming potential analyzer", Desalination, 95(3), 269-286.   DOI
14 Fritzmann, C., Lowenberg, J., Wintgens, T. and Melin, T. (2007), "State-of-the-art of reverse osmosis desalination", Desalination, 216(1-3), 1-76.   DOI   ScienceOn
15 Fujioka, T., Khan, S.J., McDonald, J.A., Roux, A., Poussade, Y., Drewes, J.E. and Nghiem, L.D. (2013), "N-nitrosamine rejection by reverse osmosis: Effects of membrane exposure to chemical cleaning reagents", Desalination, 343, 60-66.
16 Hydranautics (2011), Foulants and cleaning procedures for composite polyamide RO membrane elements (ESPA, ESNA, CPA, LFC, NANO and SWC), TSB107.21.
17 Hoang, T., Stevens, G. and Kentish, S. (2010), "The effect of feed pH on the performance of a reverse osmosis membrane", Desalination, 261(1-2), 99-103.   DOI
18 Hung, P.V.X., Cho, S.-H. and Moon, S.-H. (2009), "Prediction of boron transport through seawater reverse osmosis membranes using solution-diffusion model", Desalination, 247(1-3), 33-44.   DOI
19 Hurwitz, G., Guillen, G.R. and Hoek, E.M.V. (2010), "Probing polyamide membrane surface charge, zeta potential, wettability, and hydrophilicity with contact angle measurements", J. Membr. Sci., 349(1-2), 349-357.   DOI
20 Kang, G.-D., Gao, C.-J., Chen, W.-D., Jie, X.-M., Cao, Y.-M. and Yuan, Q. (2007), "Study on hypochlorite degradation of aromatic polyamide reverse osmosis membrane", J. Membr. Sci., 300(1-2), 165-171.   DOI   ScienceOn
21 Kaykioglu, G., Coban, A., Debik, E., Kayacan, B.B. and Koyuncu, I. (2012), "The evaluation of fouling effects in membrane process dealing with the biologically pre-treated textile effluents", Desal. Water Treat., 40(1-3), 254-259.   DOI
22 Kezia, K., Lee, J., Hill, A.J. and Kentish, S.E. (2013), "Convective transport of boron through a brackish water reverse osmosis membrane", J. Membr. Sci., 445, 160-169.   DOI
23 Kim, C.K., Kim, J.H., Roh, I.J. and Kim, J.J. (2000), "The changes of membrane performance with polyamide molecular structure in the reverse osmosis process", J. Membr. Sci., 165(2), 189-199.   DOI
24 Kimura, K., Hane, Y., Watanabe, Y., Amy, G. and Ohkuma, N. (2004), "Irreversible membrane fouling during ultrafiltration of surface water", Water Res., 38(14-15), 3431-3441.   DOI
25 Li, Q., Xu, Z. and Pinnau, I. (2007), "Fouling of reverse osmosis membranes by biopolymers in wastewater secondary effluent: Role of membrane surface properties and initial permeate flux", J. Membr. Sci., 290(1-2), 173-181.   DOI
26 Koseoglu, H., Kabay, N., Yuksel, M., Sarp, S., Arar, O. and Kitis, M. (2008), "Boron removal from seawater using high rejection SWRO membranes - impact of pH, feed concentration, pressure, and cross-flow velocity", Desalination, 227(1-3), 253-263.   DOI
27 Li, Q. and Elimelech, M. (2004), "Organic fouling and chemical cleaning of nanofiltration membranes: Measurements and mechanisms", Environ. Sci. Technol., 38(17), 4683-4693.   DOI
28 Li, X., Li, J., Fu, X., Wickramasinghe, R. and Chen, J. (2005), "Chemical cleaning of PS ultrafilters fouled by the fermentation broth of glutamic acid", Sep. Purif. Technol., 42(2), 181-187.   DOI
29 Liikanen, R., Yli-Kuivila, J. and Laukkanen, R. (2002), "Efficiency of various chemical cleanings for nanofiltration membrane fouled by conventionally-treated surface water", J. Membr. Sci., 195(2), 265-276.   DOI
30 Madaeni, S.S. and Samieirad, S. (2010), "Chemical cleaning of reverse osmosis membrane fouled by wastewater", Desalination, 257(1-3), 80-86.   DOI   ScienceOn
31 Madaeni, S.S., Mohamamdi, T. and Kazemi Moghadam, M. (2001), "Chemical cleaning of reverse osmosis membranes", Desalination, 134(1-3), 77-82.   DOI
32 Manttari, M., Pihlajamaki, A. and Nystrom, M. (2006), "Effect of pH on hydrophilicity and charge and their effect on the filtration efficiency of NF membranes at different pH", J. Membr. Sci., 280(1-2), 311-320.   DOI
33 Simon, A., Price, W.E. and Nghiem, L.D. (2013b), "Influence of formulated chemical cleaning reagents on the surface properties and separation efficiency of nanofiltration membranes", J. Membr. Sci., 432, 73-82.   DOI
34 Schaep, J., Vandecasteele, C., Wahab, M.A. and Richard, B.W. (2001), "Modelling the retention of ionic components for different nanofiltration membranes", Sep. Purif. Technol., 22-23(1-3), 169-179.   DOI
35 Simon, A., Price, W.E. and Nghiem, L.D. (2012), "Effects of chemical cleaning on the nanofiltration of pharmaceutically active compounds (PhACs)", Sep. Purif. Technol., 88, 208-215.   DOI
36 Simon, A., McDonald, J.A., Khan, S.J., Price, W.E. and Nghiem, L.D. (2013a), "Effects of caustic cleaning on pore size of nanofiltration membranes and their rejection of trace organic chemicals", J. Membr. Sci., 447, 153-162.   DOI
37 Tang, C.Y., Kwon, Y.-N. and Leckie, J.O. (2009), "Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: II. Membrane physiochemical properties and their dependence on polyamide and coating layers", Desalination, 242(1-3), 168-182.   DOI
38 Teixeira, M.R., Rosa, M.J. and Nystrom, M. (2005), "The role of membrane charge on nanofiltration performance", J. Membr. Sci., 265(1-2), 160-166.   DOI
39 Tian, J.y., Chen, Z.l., Yang, Y.l., Liang, H., Nan, J. and Li, G.b. (2010), "Consecutive chemical cleaning of fouled PVC membrane using NaOH and ethanol during ultrafiltration of river water", Water Res., 44(1), 59-68.   DOI
40 Tu, K.L., Nghiem, L.D. and Chivas, A.R. (2011), "Coupling effects of feed solution pH and ionic strength on the rejection of boron by NF/RO membranes", Chem. Eng. J., 168(2), 700-706.   DOI
41 Wintgens, T., Melin, T., Schafer, A., Khan, S., Muston, M., Bixio, D. and Thoeye, C. (2005), "The role of membrane processes in municipal wastewater reclamation and reuse", Desalination, 178(1-3), 1-11.   DOI
42 Tu, K.L., Fujioka, T., Khan, S.J., Poussade, Y., Roux, A., Drewes, J.E., Chivas, A.R. and Nghiem, L.D. (2013), "Boron as a surrogate for N-nitrosodimethylamine rejection by reverse osmosis membranes in potable water reuse applications", Environ. Sci. Technol., 47(12), 6425-6430.   DOI
43 Van der Bruggen, B., Hawrijk, I., Cornelissen, E. and Vandecasteele, C. (2003), "Direct nanofiltration of surface water using capillary membranes: comparison with flat sheet membranes", Sep. Purif. Technol., 31(2), 193-201.   DOI
44 Weis, A., Bird, M.R. and Nystrom, M. (2003), "The chemical cleaning of polymeric UF membranes fouled with spent sulphite liquor over multiple operational cycles", J. Membr. Sci., 216(1-2), 67-79.   DOI