• Title/Summary/Keyword: Surface-treatment

Search Result 8,509, Processing Time 0.035 seconds

Effects of colored zirconia surface treatment on the bond strength of veneering ceramics

  • Kim, SA-Hak;Kim, Chong-Kyen
    • Journal of Technologic Dentistry
    • /
    • v.43 no.4
    • /
    • pp.160-167
    • /
    • 2021
  • Purpose: In this study, when the etching treatment method, which is a chemical surface treatment method, is applied to colored zirconia, the shear bond strength between the veneering ceramic material and colored zirconia is compared with that without surface treatment, and the fracture type is observed to evaluate the etching treatment effect of colored zirconia. Methods: Experiments were conducted after dividing the study sample into two groups, which are the zirconia control group without surface treatment using colored zirconia blocks (without etching zirconia, NZC group) and the zirconia group treated with a commercially available etching solution (etching liquid zirconia, EZC group). Results: The mean shear bond strength of the NZC group was 20.31±2.32 Mpa, and that of the EZC group was 25.95±2.34 Mpa, and the difference between these two values was statistically significant (p<0.05). Further, the surface roughness Ra value was higher in the EZC group than in the NZC group. In the fracture pattern, cohesive fractures were dominant, and adhesive fractures and cohesive fractures were mixed. Conclusion: The bond strength was significantly higher in the group treated with colored zirconia. The fracture pattern was mostly cohesive failure in the group not treated with etching and changed to mixed failure as the etching treatment progressed.

Load capacity simulation of an agricultural gear reducer by surface heat treatment

  • Lee, Pa-Ul;Chung, Sun-Ok;Choi, Chang-Hyun;Joo, Jai-Hwang;Rhee, Joong-Yong;Choi, Young-Soo;Ha, Jong-Woo;Park, Young-Jun;Hong, Sun-Jung;Kim, Yong-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.4
    • /
    • pp.656-664
    • /
    • 2016
  • Gear reducers are widely used for various agricultural machinery applications such as greenhouses, tractors, and agricultural vehicles. However, thermal deformation and surface pitting at gear tooth flank frequently occur in gear reducers due to high torque. Thus, surface heat treatment of gears is required to improve wear and fatigue resistance. The objective of this study was to simulate the load capacity of the agricultural gear reducer. The simulation was performed for the following three surface heat treatment methods: untreated gears, nitriding heat treatment, and induction hardening method, those mostly used for agricultural gear reducers. The load capacity of the gear reducer was simulated using the safety factor, limit bending stress, and limit contact stress of the gear. The simulation of the load capacity was conducted using KISSsoft commercial software for gear analysis. The main results of simulation test were as follows: first, the nitriding heat treatment resulted in the highest safety factor for bending stress, which was increased about 77% from those of the untreated gears. Second, the induction hardening was the highest safety factor for contact stress, which was increased about 150% from those of the untreated gears. The safety factor for contact stress of the induction hardening was increased about 64% from those of the nitriding heat treatment. The study result suggested that the surface heat treatments could enhance load capacity and that the method of surface heat treatment should be determined based on simulation results for appropriate use scenarios.

Rolling Contact Fatigue and Residual Stress Properties of SAE52100 Steel by Ultrasonic Nano-Crystalline Surface Modification (UNSM) (초음파 나노표면 개질처리를 통한 베어링강의 회전접촉피로 및 잔류응력 특성에 대한 연구)

  • Lee, Changsoon;Park, Ingyu;Cho, Insik;Hong, Junghwa;Jhee, Taegu;Pyoun, Youngsik
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.1
    • /
    • pp.10-19
    • /
    • 2008
  • To investigate the effect of ultrasonic nano-crystalline surface modification (UNSM) treatment on rolling contact fatigue and residual stress properties of bearing steels, this paper carried out a rolling contact fatigue test, measured residual stress and retained austenite, performed a wear test, observed microstructure, measured micro hardness, and analyzed surface topology. After the UNSM treatment, it was found that the surface became minute by over $100{\mu}m$. The micro surface hardness was changed from Hv730~740 of base material to Hv850~880 with about 20% improvement, and hardening depth was about 1.3 mm. The compressive residual stress was measured as high as -700~-900 MPa, and the quantity of retained austenite was reduced to 27% from 34%. The polymet RCF-6 ball type rolling contact fatigue test showed over 4 times longer fatigue lifetime after the UNSM treatment under 551 kgf load and 8,000 rpm. In addition, this paper observed the samples, which went through the rolling contact fatigue test, with OM and SEM, and it was found that the samples had a spalling phenomenon (the race way is decentralized) after the UNSM treatment. However, before the treatment, the samples had excessive spalling and complete exploration. Comparison of the test samples before and after the UNSM treatment showed a big difference in the fatigue lifetime, which seems to result from the complicated effects of micro particles, compressive residual stress, retained austenite, and surface topology.

Study of Adhesion according to Various Surface Treatments for Lithium Ion Secondary Battery Pouch Film (다양한 표면처리에 따른 리튬이온 이차전지용 파우치 필름을 위한 접착성에 관한 연구)

  • Kim, Do Hyun;Bae, Sung Woo;Cho, Jung Min;Yoo, Min Sook;Kim, Dong Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.3
    • /
    • pp.231-234
    • /
    • 2016
  • Pouch film is manufactured by laminating aluminum foil, polyamide film and polypropylene film with an adhesive or extrusion resin. However, a surface treatment is required for the aluminum because bonding does not occur easily between the aluminum foil and the polymer film. Thus, for this study, surface treatment experiments were performed in order to confirm the effect on adhesion strength. First, a variety of surface treatment solutions were coated on aluminum foil, and contact angle and surface morphology analysis was carried out for the surface-treated aluminum. For lamination of the surface-treated aluminum foil with polyamide film, a polyurethane base adhesive was prepared for the adhesive strength test specimens. The adhesive strength between the aluminum foil and the polyamide film of the resulting specimens was measured (UTM). With such an experiment, it was possible to evaluate the effect on adhesive strength of the various surface treatments.

Characteristic of Evaporation Cooling in Water Droplet Impinging on Steel with Various Surface Roughness and Droplet Diameter (강에서 표면조도의 변화와 액적 직경에 따른 충돌 액적 증발 냉각 특성)

  • Jang, C.S.;Sohn, C.H.;Chung, S.W.;Choi, W.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.19 no.3
    • /
    • pp.141-148
    • /
    • 2006
  • An experimental study is presented for water droplet impingement on a steel surface in the process of heat treatment. The objective of the present work is to examine characteristic of evaporation cooling due to surface roughness and droplet diameter under conductive heat input condition. The surface temperatures varied from $80{\sim}155^{\circ}C$, surface roughness was from $R_a=0.12{\mu}m$ to $R_a=1.14{\mu}m$ and droplet diameter was from 2.4 mm to 3.0 mm. The results show that the total evaporation time is shorter for the larger surface roughness and the smaller droplet size, the time average heat flux has maximum value for the larger surface roughness and the smaller droplet size. The total evaporation time has not influence on the nuclear boiling region.

An Experimental Study on the Effects of Contact Angle on a Falling Liquid Film (접촉각이 유하액막 특성에 미치는 영향에 관한 실험적 연구)

  • Kim, Kyung-Hee;Kang, Byung-Ha;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.11
    • /
    • pp.867-873
    • /
    • 2006
  • Vertical falling liquid film is extensively used in heat and mass transfer processes of many applications, such as evaporative coolers, cooling towers, and absorption chillers. In such cases, it is required that the falling film spreads widely in the surface forming thin liquid film to enlarge contact surface. An addition of surface active agent to a falling liquid film or hydrophilic surface treatment affects the fluid physical properties of the film. Surfactant addition not only decreases contact angle between the liquid and solid surface but also changes the surface from hydrophobicity to hydrophilicity. In this study, the effects of contact angle on falling film characteristics over a vertical surface have been investigated experimentally. The contact angle is varied either by an addition of surfactant to the liquid or by hydrophilic surface treatment. It is found that the wetted area is increased and film thickness is decreased by the hydrophilic treatment as compared with those of other surfaces. With this hydrophilic treatment, the falling liquid film spreads out widely in the surface. As surfactant concentration is increased, wetted area is also increased and the film thickness is substantially decreased.

Development of Surface Treatment for Hydrophobic Property on Aluminum Surface (알루미늄의 발수 표면처리 기술 개발)

  • Byun, Eun-Yeon;Lee, Seung-Hun;Kim, Jong-Kuk;Kim, Yang-Do;Kim, Do-Geun
    • Journal of Surface Science and Engineering
    • /
    • v.45 no.4
    • /
    • pp.151-154
    • /
    • 2012
  • A hydrophobic surface has been fabricated on aluminum by two-step surface treatment processes consisting of structure modification and surface coating. Nature inspired micro nano scale structures were artificially created on the aluminum surface by a blasting and Ar ion beam etching. And a hydrophobic thin film was coated by a trimethylsilane ($(CH_3)_3SiH$) plasma deposition to minimize the surface energy of the micro nano structure surface. The contact angle of micro nano structured aluminum surface with the trimethylsilane coating was $123^{\circ}$ (surface energy: 9.05 $mJ/m^2$), but the contact angle of only trimethylsilane coated sample without the micro nano surface structure was $92^{\circ}$ (surface energy: 99.15 $mJ/m^2$). In the hydrophobic treatment of aluminum surface, a trimethylsilane coated sample having the micro nano structure was more effective than only trimethylsilane coated sample without the micro nano structure.

Interface and Surface Properties by Surface Treatment of Zirconia for All Ceramic Crown (전부도재관용 지르코니아의 표면처리에 따른 표면특성 및 계면특성 관찰)

  • Kim, Chi-Young;Chung, In-Sung;Choi, Sung-Min
    • Journal of Technologic Dentistry
    • /
    • v.35 no.2
    • /
    • pp.137-142
    • /
    • 2013
  • Purpose: This study was to observe the surface and interfacial characteristic of Zirconia by surface treatment. And it was observed the roughness and contact angle according to processing, and the interfacial properties by surface treatment on zirconia. Methods: The oxide formation and ion diffusion between core and veneer ceramic were determined by the X-ray Dot Mapping of EPMA(Electron probe micro analyzer). The roughness was measured by 3D Digital microscope and the contact angle according to processing of zirconia was observed using distilled water on the surface. Results: The surface roughness of the specimens Z04, Z12, Z15 was measured $0.67({\pm}0.03){\mu}m$, $0.50({\pm}0.12){\mu}m$, $0.35({\pm}0.09){\mu}m$, respectively. As results of contact angle test, Z04, Z12, Z15 of specimen group without binder treatment was measured $46.79({\pm}3.17)^{\circ}$, $57.47({\pm}4.83)^{\circ}$, $56.19({\pm}2.66)^{\circ}$, respectively. but, L04, L12, L15 of specimen group without binder treatment was measured $63.84({\pm}2.20)^{\circ}$, $66.08({\pm}0.16)^{\circ}$, $65.10({\pm}1.01)^{\circ}$, respectively. Average contact angle of L15 was measured $65.10({\pm}1.01)^{\circ}$. In X-ray Dot Mapping results, thickness of binder including Al element was measured that each of L04, L12, L15 were $20{\mu}m$, $15{\mu}m$, $10{\mu}m$. Conclusion: The more rough surface increases the wettability, but the sintered exclusive binder decreases the wettability.

SHEAH BOND STRENGTH OF VENEERING CERAMIC TO ELECTROFORMED GOLD WITH THREE DIFFERENT SURFACE TREATMENT (표면처리방법에 따른 전기성형금속의 도재결합강도)

  • Kim Cheol;Lim Jang-Seop;Jeon Young-Chan;Jeong Chang-Mo;Jeong Hee-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.5
    • /
    • pp.599-610
    • /
    • 2005
  • Purpose: The success of the bonding between electroformed gold and ceramic is dependent on the surface treatment of the pure gold coping. The purpose of this study was to evaluate the bonding strength between the electroformed gold and ceramic with varying surface treatment. Materials and methods: A total of 32 disks,8 were using conventional ceramometal alloy, 24 were using electroforming technique as recommended by manufacturer, were prepared. 24 electroformed disks were divided 3 groups according to surface treatment, i.e. 50 microns aluminium oxide sandblasting(GES-Sand), gold bonder treatment(GES-Bond) and $Rocatec^{TM}$ system(GES-Rocatec). For control group of conventional alloy 50 microns aluminium oxide treatment was done(V-Supragold). Energy dispersive x-ray analysis and scanning electron microscope image were observed. Using universal testing machine, shear bond strength and bonding failure mode at metal-porcelain interface were measured. Results and Conclusion: The following conclusions were drawn: 1. In the energy dispersive x-ray analysis, the Au was main component in electroformed gold(99.9wt%). After surface treatment, a little amount of $Al_2O_3(2.4wt%)$ were found in GES-Sand, and $SiO_2(4wt%)$ in GES-Bond. In GES-Rocatec, however, a large amount of $SiO_2(17.4wt%)$ were found. 2. In the scanning electron microscopy, similar pattern of surface irregu larities were observed in V-Supragold and GES-Sand. In GES-Bond, surface irregularities were increased and globular ceramic particles were observed. In GES-Rocatec, a large amount of silica particles attached to metal surface with increased surface irregularities were observed. 3. The mean shear bond strength values(MPa) in order were $22.9{\pm}3.7(V-Supragold),\;22.1{\pm}3.8(GES-Bond),\;20.1{\pm}2.8(GES-Rocatec)\;and\;13.0{\pm}1.4(GES-Sand)$. There was no significant difference between V-Supragold, GES-Bond, and GES-Rocatec. (P>0.05) 4. Most bonding failures modes were adhesive type in GES-Sand. However, in V-Supragold, GES-Bond and GES-Rocatec, cohesive and combination failures were commonly observed. From the result, with proper surface treatment method electroformed gold may have enough strength compare to conventional ceramometal alloy.

An Experimental Study on the Permeability Evaluation of Metal Spray System by Concrete Surface Treatment (콘크리트 표면처리방법에 따른 금속용사 피막의 투수성 평가에 관한 실험적 연구)

  • Park, Jin-Ho;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.34-35
    • /
    • 2015
  • Recently, introduction of Advanced water treatment facilities has been increasing due to serious domestic water pollution. Ozone is a strong oxidizing materials in the advanced water treatment facilities. However, due to such a strong oxidation, Ozone eroded waterproofing/corrosion on the concrete surface and caused performance degradation. Therefore, in this study, permeability experiment of metal spraying system by concrete surface treatment was conducted.

  • PDF