• Title/Summary/Keyword: Surface wind

Search Result 1,633, Processing Time 0.03 seconds

Simulation of Indian Summer Monsoon Rainfall and Circulations with Regional Climate Model

  • Singh, G.P.;Oh, Jai-Ho
    • Proceedings of the Korean Quaternary Association Conference
    • /
    • 2004.06a
    • /
    • pp.24-25
    • /
    • 2004
  • It is well known that there is an inverse relationship between the strength of Indian summer monsoon Rainfall (ISMR) and extent of Eurasian snow cover/depth in the preceding season. Tibetan snow cover/depth also affects the Asian monsoon rainy season largely. The positive correlation between Tibetan sensible heat flux and southeast Asian rainfall suggest an inverse relationship between Tibetan snow cover and southeast Asian rainfall. Developments in Regional Climate Models suggest that the effect of Tibetan snow on the ISMR can be well studied by Limited Area Models (LAMs). LAMs are used for regional climate studies and operational weather forecast of several hours to 3 days in future. The Eta model developed by the National Center for Environmental Prediction (NCEP), the Fifth-Generation NCAR/Penn State Mesoscale Model (MM5) and Regional Climate Model (RegCM) have been used for weather prediction as well as for the study of present-day climate and variability over different parts of the world. Regional Climate Model (RegCM3) has been widely . used for various mesoscale studies. However, it has not been tested to study the characteristics of circulation features and associated rainfall over India so far. In the present study, Regional Climate Model (RegCM-3) has been integrated from 1 st April to 30th September for the years 1993-1996 and monthly mean monsoon circulation features and rainfall simulated by the model at 55km resolution have been studied for the Indian summer monsoon season. Characteristics of wind at 850hPa and 200hPa, temperature at 500hPa, surface pressure and rainfall simulated by the model have been examined for two convective schemes such as Kuo and Grell with Arakawa-Schubert as the closure scheme, Model simulated monsoon circulation features have been compared with those of NCEP/NCAR reanalyzed fields and the rainfall with those of India Meteorological Department (IMD) observational rainfall datasets, Comparisons of wind and temperature fields show that Grell scheme is closer to the NCEP/NCAR reanalysis, The influence of Tibetan snowdepth in spring season on the summer monsoon circulation features and subsequent rainfall over India have been examined. For such sensitivity experiment, NIMBUS-7 SMMR snowdepth data have been used as a boundary condition in the RegCM3, Model simulation indicates that ISMR is reduced by 30% when 10cm of snow has been introduced over Tibetan region in the month of previous April. The existence of Tibetan snow in RegCM3 also indicates weak lower level monsoon westerlies and upper level easterlies.

  • PDF

Assessment of p-y Behaviors of a Cyclic Laterally Loaded Pile in Saturated Dense Silty Sand (조밀한 포화 실트질 모래지반에서 횡방향 반복하중을 받는 말뚝의 p-y 거동 평가)

  • Baek, Sung-Ha;Choi, Changho;Cho, Jinwoo;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.11
    • /
    • pp.97-110
    • /
    • 2019
  • Piles that support offshore wind turbine structures are dominantly subjected to cyclic lateral loads of wind, waves, and tidal forces. For a successful design, it is imperative to investigate the behavior of the cyclic laterally loaded piles; the p-y curve method, in which the pile and soil are characterized as an elastic beam and nonlinear springs, respectively, has been typically utilized. In this study, model pile tests were performed in a 1 g gravitational field so as to investigate the p-y behaviors of cyclic laterally loaded piles installed in saturated dense silty sand. Test results showed that cyclic lateral loads gradually reduced the overall stiffness of the p-y curves (initial stiffness and ultimate soil reaction). This is because the cyclic lateral loads disturbed the surrounding soil, which led to the decrement of the soil resistance. The decrement effects of the overall stiffness of the p-y curves became more apparent as the magnitude of cyclic lateral load increased and approached the soil surface. From the test results, the cyclic p-y curve was developed using a p-y backbone curve method. Pseudo-static analysis was also performed with the developed cyclic p-y curve, confirming that it was able to properly predict the behaviors of cyclic laterally loaded pile installed in saturated dense silty sand.

Water Masses and Frontal Structures in Winter in the Northern East China Sea (동중국해 북부해역의 겨울철 수계와 전선구조)

  • 손영태;이상호;이재철;김정창
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.3
    • /
    • pp.327-339
    • /
    • 2003
  • During the winter in February 1998, January and April 1999, interdisciplinary research was conducted in a large area including the South Sea of Korea and northern East China Sea to examine distribution and structure. Water masses identified from the observed data are Warm Water originated from Tsushima Warm Current, Yellow Sea Cold Water (Northern or Central Cold Water) and Korean Southern Sea Cold Water. In the southern Yellow Sea, Warm Water originated from Tsushima Warm Current, flowing into the Cheju Strait after turning around the western Cheju Island, makes a front of '┍' shape, which is bounded by the Yellow Sea Central Cold Water in the southern part of Daeheuksan Island and by the Yellow Sea Northern Cold Water in the eastern part of the Yangtze Bank. This front changes its corner shape and position with strength of the warm water extension toward northwestern Yellow Sea. The position and structure of the fronts off the southwestern tip of the Korean peninsular and near the Yangtze Bank varies with observation period. In the front in the South Sea of Korea, cold coastal water which if formed independently due to local cooling, ,sinks along the sloping bottom. We explained the processes of variations in the distribution and structure of these winter fronts in terms of up-wind and down-wind flow by the seasonal monsoon, heat budget through the sea surface and density difference across the fronts.

Development of Moisture Loss Index Based on Field Moisture Measurement using Portable Time Domain Reflectometer (TDR) for Cold In-place Recycled Pavements (휴대용 TDR 함수량계로 측정한 현장 함수비를 이용한 현장 상온 재활용 아스팔트 포장의 수분 감소계수 개발)

  • Kim, Yong-Joo;Lee, Ho-Sin David;Im, Soo-Hyok
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.139-145
    • /
    • 2011
  • The practice of asphalt pavement recycling has grown rapidly over the decade, one of which is the cold in-place recycling with the foamed asphalt (CIR-foam) or the emulsified asphalt (CIR-emulsion). Particularly, in Iowa, the CIR has been widely used in rehabilitating the rural highways because it significantly increases the service life of the existing pavement. The CIR layer is typically overlaid by the hot mix asphalt (HMA) to protect it from water ingress and traffic load and obtain the required pavement structure and texture. Most public agencies have different curing requirements based on the number of curing days or the maximum moisture contents for the CIR before placing the overlay. The main objective of this study is to develop a moisture loss index that the public agency can use to monitor the moisture content of CIR layers in preparation for a timely placement of the wearing surface. First, the moisture contents were measured in the field using a portable time domain reflectometry (TDR) device. Second, the weather information in terms of rain fall, air temperature, humidity and wind speed was collected from the same location. Finally, a moisture loss index was developed as a function of initial moisture content, air temperature, humidity and wind speed. The developed moisture loss index based on the field measurements would help the public agency to determine an optimum timing of an overlay placement without continually measuring moisture conditions in the field.

Characteristics of Ocean Environment Before and After Coastal Upwelling in the Southeastern Part of Korean Peninsula Using an In-situ and Multi-Satellite Data (다중위성 및 현장관측을 이용한 동해남부 연안용승 발생 전후의 해양환경 특성)

  • Kim, Sang-Woo;Go, Woo-Jin;Kim, Seong-Soo;Jeong, Hee-Dong;Yamada, Keiko
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.4
    • /
    • pp.345-352
    • /
    • 2010
  • The objective of this paper is to explore the short-term variability of water temperature and chlorophyll a (Chl-a) derived from in-situ and satellite data (NOAA, Sea WiFS and QuikScat) in the upwelling region of the southeastern part of Korean Peninsula in June and August, 2007. Particularly we focused on the spatial variability of sea surface temperature(SST) and Chl-a in the East Korean Warm Current region. In the results of the in-situ data, the peaks of Chl-a in june was shown at a depth of 50m The peaks of Chl-a in August was shown at a depth of 10m at the stations 4 and 5 near the land, and a depth of 30m at the other stations. The Chl-a concentrations in August were also lower than those in june except for station 5. As a result, the peaks of Chl-a in August occurred at a depth of 20~40 m shallower than those of Chl-a in june. This indicates that the nutrient-rich water within the mixed layer depth may be immediately supplied by the coastal upwelling, which is due to the southerly component of wind. The relationship between SST and Chl-a showed a negative correlation, and the high concentration of Chl-a occurred in the cold water area. The southerly wind and the East Korean Warm Current influenced a remarkable offshore movement of the cold water and Chl-a near the coastal area.

Characteristics of a Heavy Rainfall Event in Yeongdong Region on 6 August, 2018 (2018년 8월 6일 발생한 영동지역 집중호우 사례에 대한 특성 연구)

  • Ahn, Bo-Young;Shim, Jae-Kwan;Kim, KyuRang;Kim, Seung-Bum
    • Journal of the Korean earth science society
    • /
    • v.41 no.3
    • /
    • pp.222-237
    • /
    • 2020
  • A heavy (93 mm hr-1) rainfall event accompanied by lightning occurred over Gangneung in the Yeongdong region of South Korea on August 6, 2018. This study investigated the underlying mechanism for the heavy rainfall event by using COMS satellite cloud products, surface- and upper-level weather charts, ECMWF reanalysis data, and radiosonde data. The COMS satellite cloud products showed rainfall exceeding 10 mm hr-1, with the lowest cloud-top temperature of approximately -65℃ and high cloud optical thickness of approximately 20-25. The radiosonde data showed the existence of strong vertical wind shear between the upper and lower cloud layers. Furthermore, a strong inversion in the equivalent potential temperature was observed at a pressure altitude of 700 hPa. In addition, there was a highly developed cloud layer at a height of 13 km, corresponding with the vertical analysis of the ECMWF data. This demonstrated the increased atmospheric instability induced by the vertical differences in equivalent potential temperature in the Yeongdong region. Consequently, cold, dry air was trapped within relatively warm, humid air in the upper atmosphere over the East Sea and adjacent Yeongdong region. This caused unstable atmospheric conditions that led to rapidly developing convective clouds and heavy rainfall over Gangneung.

Amber Information Design for Supporting Safe-Driving Under Local Road in Small-scale Area (국지지역에서의 안전운전 지원을 위한 경보정보 설계)

  • Moon, Hak-Yong;Ryu, Seung-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.5
    • /
    • pp.38-48
    • /
    • 2010
  • Adverse weather (e.g. strong winds, snow and ice) will probably appear as a more serious and frequent threat to road traffic than in clear climate. Another consequence of climate change with a natural disastrous on road traffic is respond to traffic accident more the large and high-rise bridge zone, tunnel zone, inclined plane zone and de-icing zone than any other zone, which in turn calls for continuous adaption of monitoring procedures. Accident mitigating measures against this accident category may consist of intense winter maintenance, the use of road weather information systems for data collection and early warnings, road surveillance and traffic control. While hazard from reduced road friction due to snow and ice may be eliminated by snow removal and de-icing measures, the effect of strong winds on road traffic are not easily avoided. The purpose of the study described here, was to design of amber information the relationship between traffic safety, weather, user information on road weather and driving conditions in local-scale Geographic. The most applications are the optimization of the amber information definition, improvements to road surveillance, road weather monitoring and improved accuracy of user information delivery. Also, statistics on wind gust, surface condition, vehicle category and other relevant parameters for wind induced accidents provide basis for traffic control, early warning policies and driver education for improved road safety at bad weather-exposed locations.

Development of Yeongdong Heavy Snowfall Forecast Supporting System (영동대설 예보지원시스템 개발)

  • Kwon, Tae-Yong;Ham, Dong-Ju;Lee, Jeong-Soon;Kim, Sam-Hoi;Cho, Kuh-Hee;Kim, Ji-Eon;Jee, Joon-Bum;Kim, Deok-Rae;Choi, Man-Kyu;Kim, Nam-Won;Nam Gung, Ji Yoen
    • Atmosphere
    • /
    • v.16 no.3
    • /
    • pp.247-257
    • /
    • 2006
  • The Yeong-dong heavy snowfall forecast supporting system has been developed during the last several years. In order to construct the conceptual model, we have examined the characteristics of heavy snowfalls in the Yeong-dong region classified into three precipitation patterns. This system is divided into two parts: forecast and observation. The main purpose of the forecast part is to produce value-added data and to display the geography based features reprocessing the numerical model results associated with a heavy snowfall. The forecast part consists of four submenus: synoptic fields, regional fields, precipitation and snowfall, and verification. Each offers guidance tips and data related with the prediction of heavy snowfalls, which helps weather forecasters understand better their meteorological conditions. The observation portion shows data of wind profiler and snow monitoring for application to nowcasting. The heavy snowfall forecast supporting system was applied and tested to the heavy snowfall event on 28 February 2006. In the beginning stage, this event showed the characteristics of warm precipitation pattern in the wind and surface pressure fields. However, we expected later on the weak warm precipitation pattern because the center of low pressure passing through the Straits of Korea was becoming weak. It was appeared that Gangwon Short Range Prediction System simulated a small amount of precipitation in the Yeong-dong region and this result generally agrees with the observations.

Investigation of Vertical Profiles of Meteorological Parameters and Ozone Concentration in the Mexico City Metropolitan Area

  • Benitez-Garcia, Sandy E.;Kanda, Isao;Okazaki, Yukiyo;Wakamatsu, Shinji;Basaldud, Roberto;Horikoshi, Nobuji;Ortinez, Jose A.;Ramos-Benitez, Victor R.;Cardenas, Beatriz
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.2
    • /
    • pp.114-127
    • /
    • 2015
  • In the Mexico City Metropolitan Area (MCMA), ozone ($O_3$) concentration is still higher than in other urban areas in developed countries. In order to reveal the current state of photochemical air pollution and to provide data for validation of chemical transport models, vertical profiles of meteorological parameters and ozone concentrations were measured by ozonesonde in two field campaigns: the first one, during the change of season from wet to dry-cold (November 2011) and the second during the dry-warm season (March 2012). Unlike previous similar field campaigns, ozonesonde was launched twice daily. The observation data were used to analyze the production and distribution of ozone in the convective boundary layer. The observation days covered a wide range of meteorological conditions, and various profiles were obtained. The evolution of the mixing layer (ML) height was analyzed, revealing that ML evolution was faster during daytime in March 2012 than in November 2011. On a day in November 2011, the early-morning strong wind and the resulting vertical mixing was observed to have brought the high-ozone-concentration air-mass to the ground and caused relatively high surface ozone concentration in the morning. The amount of produced ozone in the MCMA was estimated by taking the difference between the two profiles on each day. In addition to the well-known positive correlation between daily maximum temperature and ozone production, effect of the ML height and wind stagnation was identified for a day in March 2012 when the maximum ground-level ozone concentration was observed during the two field campaigns. The relatively low ventilation coefficient in the morning and the relatively high value in the afternoon on this day implied efficient accumulation of the $O_3$ precursors and rapid production of $O_3$ in the ML.

A Study on the Characteristics of Marine Debris in Coastline : Daekwang Beach In Imja Island, Jeollanam-Do, Korea (해안표착물의 특성에 관한 연구 : 전라남도 신안군 임자도 대광해수욕장)

  • Jang, Seong-Woong;Oh, Seung-Yeol;Kim, Dae-Hyun;Yoon, Hong-Joo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.2
    • /
    • pp.123-129
    • /
    • 2011
  • A study on the occurrence and movement of marine debris is required for protecting the marine environment and ecosystem from marine pollution. The aim of this study is to show annual production and movement characteristics through analysis for the flow path, composition and the sources of marine debris. This study analyzed the distribution and characteristics of marine debris collected in the region of $100\;m{\times}20\;m$($=2,000\;m^2$) at the Daekwang Beach in the Yellow Sea. During the collection period from 2008 to 2010, the total weight of the marine debris was 1,445 kg in this site. The most marine debris was plastic amounting to 46.5% of the whole collection; the rest were styrofoam(20%) and wooden material(12.6%). The amount of marine debris mused from foreign country observed 155.5 kg, more than 90% of them was plastic came from China such as buoys. Additionally, this study analyzed seasonal change if marine environment to understand occurrence amount change if marine debris. 2009 and 2010 was high occurrence ratio in season that the north wind is very strong and the occurrence rate appeared highest by 40% in the summer(July) of 2008 that appeared westbound tidal current. Overall, marine Debris mused from foreign country was high occurrence ratio in January, May and then November has a lot of quantity secondly. While, occurrence ratio was the highest by 46% summer(July) in 2008, but in 2009 and 2010 showed the lowest rate to 4%.