• Title/Summary/Keyword: Surface wetting test

Search Result 71, Processing Time 0.032 seconds

Effects of Flux Activator on Wettability and Slump of Sn-Ag-Cu Solder Paste (플럭스 활성제 종류에 따른 Sn-Ag-Cu 솔더 페이스트의 젖음성 및 슬럼프 특성 평가)

  • Kwon, Soonyong;Seo, Wonil;Ko, Yong-Ho;Lee, Hoo-Jeong;Yoo, Sehoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.123-128
    • /
    • 2018
  • Effect of activators in flux on the printability and wettability of a solder paste was evaluated in this study. The activators in this study were dicarboxylic acids, which were oxalic acid (n = 0), malonic acid (n = 1), succinic acid (n = 2), glutaric acid (n = 3), adipic acid (n = 4), and pimelic acid (n = 5). When the solder pastes were observed with a SMT scope, solder with glutaric acid showed clean and shiny surface when it was melted. Slump ratio of the solder pastes was low when the carbon numbers of the dicarboxylic acid were 1-3. Spreadability was high when the carbon number was over 2. Zero cross time of wetting balance test was under 1 sec when the carbon number was over 3. When activator was oxalic acid or malonic acid, zero cross time was over 1 sec and maximum wetting force was low. Fluxes with the oxalic acid and malonic acid showed decomposition at the temperature close to melting point. Among the dicarboxylic acids, glutaric acid provided excellent slump, spreadability, and wettability.

Biosurfactant as a microbial pesticide

  • Lee, Baek-Seok;Choi, Sung-Won;Choi, Ki-Hyun;Lee, Jae-Ho;Kim, Eun-Ki
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.40-44
    • /
    • 2003
  • Soil-borne infectious disease including Pythium aphanidermatum and Rhizoctonia solani causes severe damage to plants, such as cucumber. This soil-borne infectious disease was not controlled effectively by chemical pesticide. Since these diseases spread through the soil, chemical agents are usually ineffective. Instead, biological control, including antagonistic microbe can be used as a preferred control method. An efficient method was developed to select an antagonistic strain to be used as a biological control agent strain. In this new method, surface tension reduction potential of an isolate was included in the ‘decision factor’ in addition to the other factors, such as growth rate, and pathogen inhibition rate. Considering these 3 decision factors by a statistical method, an isolate from soil was selected and was identified as Bacillus sp. GB16. In the pot test, this strain showed the best performance among the isolated strains. The lowest disease incidence rate and fastest seed growth was observed when Bacillus sp. GB16 was used. Therefore this strain was considered as plant growth promoting rhizobacteria (PGPR). The action of surface tension reducing component was deduced as the enhancement of wetting, spreading, and residing of antagonistic strain in the rhizosphere. This result showed that new selection method was significantly effective in selecting the best antagonistic strain for biological control of soil-borne infectious plant pathogen. The antifungal substances against P. aphanidermatum and R. solani were partially purified from the culture filtrates of Bacillus sp. GB16. In this study, lipopeptide possessing antifungal activity was isolated from Bacillus sp. GB16 cultures by various purification procedures and was identified as a surfactin-like lipopeptide based on the Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), high performance liquid chromatography mass spectroscopy (HPLC-MS), and quadrupole time-of-flight (Q-TOF) ESI-MS/MS data. The lipopeptide, named GB16-BS, completely inhibited the growth of Pythium aphanidermatum, Rhizoctonia solani, Penicillium sp., and Botrytis cineria at concentrations of 10 and 50 mg/L, respectively. A novel method to prevent the foaming and to provide oxygen was developed. During the production of surface active agent, such as lipopeptide (surfactin), large amount of foam was produced by aeration. This resulted in the carryover of cells to the outside of the fermentor, which leads to the significant loss of cells. Instead of using cell-toxic antifoaming agents, low amount of hydrogen peroxide was added. Catalase produced by cells converted hydrogen peroxide into oxygen and water. Also addition of corn oil as an oxygen vector as well as antifoaming agent was attempted. In addition, Ca-stearate, a metal soap, was added to enhance the antifoam activity of com oil. These methods could prevent the foaming significantly and maintained high dissolved oxygen in spite of lower aeration and agitation. Using these methods, high cell density, could be achieved with increased lipopeptide productivity. In conclusion to produce an effective biological control agent for soil-borne infectious disease, following strategies were attempted i) effective screening of antagonist by including surface tension as an important decision factor ii) identification of antifungal compound produced from the isolated strain iii) novel oxygenation by $H_2O_2-catalase$ with vegetable oil for antifungal lipopeptide production.

  • PDF

Uniformity of Large Gypsum-cemented Specimens Fabricated by Air Pluviation Method (낙사법으로 조성된 대형 석고 고결시료의 균질성)

  • Lee, Moon-Joo;Choi, Sung-Kun;Choo, Hyun-Wook;Cho, Yong-Soon;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.91-99
    • /
    • 2008
  • The method to prepare the large cemented sand specimen for calibration chamber test by air-pluviation is investigated in this study. The uniformity of cemented specimen is evaluated by performing the CPTs, DMTs, and bender element tests in the calibration chamber. The sand particles, pre-wetted with 0.5% water content, are mixed with gypsum to provide the homogeneous coating of gypsum particles on the grain surface. It was shown that the pre-wetting of particle surface is effective to minimize the potential for segregation between sands and gypsum during air-pluviation. It was observed that the extreme void ratios ($e_{max}\;and\;e_{mix}$) of the mixture of pre-wetted sand and gypsum powder increase at lower gypsum content while those of the mixture of dry sand and gypsum decrease with increasing gypsum content. It was also shown from the test results that large cemented specimens reconstituted in calibration chamber by rainer system are quite uniform in vertical and horizontal directions.

New Generation of Lead Free Paste Development

  • Albrecht Hans Juergen;Trodler K. G.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2004.09a
    • /
    • pp.233-241
    • /
    • 2004
  • A new alloy definition will be presented concerning increasing demands for the board level reliability of miniaturized interconnections. The damage mechanism for LFBGA components on different board finishes is not quite understood. Further demands from mobile phones are the drop test, characterizing interface performance of different package constructions in relation to decreased pad constructions and therefore interfaces. The paper discusses the characterization of interfaces based on SnPb, SnPbXYZ, SnAgCu and SnAgCuInNd ball materials and SnAgCuInNd as solder paste, the stability after accelerated tests and the description of modified interfaces strictly related to the assembly conditions, dissolution behavior of finishes on board side and the influence of intermetallic formation. The type of intermetallic as well as the quantity of intermetallics are observed, primaliry the hardness, E modules describing the ability of strain/stress compensation. First results of board level reliability are presented after TCT-40/+150. Improvement steps from the ball formulation will be discussed in conjunction to the implementation of lead free materials In order to optimize ball materials for area array devices accelareted aging conditions like TCTs were used to analyze the board level reliability of different ball materials for BGA, LFBGA, CSP, Flip Chip. The paper outlines lead-free ball analysis in comparison to conventional solder balls for BGA and chip size packages. The important points of interest are the description of processability related to existing ball attach procedures, requirements of interconnection properties and the knowledge gained the board level reliability. Both are the primary acceptance criteria for implementation. Knowledge about melting characteristic, surface tension depend on temperature and organic vehicles, wetting behavior, electrical conductivity, thermal conductivity, specific heat, mechanical strength, creep and relaxation properties, interactions to preferred finishes (minor impurities), intermetallic growth, content of IMC, brittleness depend on solved elements/IMC, fatigue resistance, damage mechanism, affinity against oxygen, reduction potential, decontamination efforts, endo-/exothermic reactions, diffusion properties related to finishes or bare materials, isothermal fatigue, thermo-cyclic fatigue, corrosion properties, lifetime prediction based on board level results, compatibility with rework/repair solders, rework temperatures of modified solders (Impurities, change in the melting point or range), compatibility to components and laminates.

  • PDF

New Generation of Lead Free Solder Spheres 'Landal - Seal'

  • Walter H.;Trodler K. G.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2004.09a
    • /
    • pp.211-219
    • /
    • 2004
  • A new alloy definition will be presented concerning increasing demands for the board level reliability of miniaturized interconnections. The damage mechanism for LFBGA components on different board finishes is not quite understood. Further demands from mobile phones are the drop test, characterizing interface performance of different package constructions in relation to decreased pad constructions and therefore interfaces. The paper discusses the characterization of interfaces based on SnPb, SnPbXYZ, SnAgCu and SnAgCuInNd ball materials and SnAgCuInNd as solder paste, the stability after accelerated tests and the description of modified interfaces stric시y related to the assembly conditions, dissolution behavior of finishes on board side and the influence of intermetallic formation. The type of intermetallic as well as the quantity of intermetallics are observed, primaliry the hardness, E modules describing the ability of strain/stress compensation. First results of board level reliability are presented after TCT-40/+150. Improvement steps from the ball formulation will be discussed in conjunction to the implementation of lead free materials. In order to optimize ball materials for area array devices accelareted aging conditions like TCTs were used to analyze the board level reliability of different ball materials for BGA, LFBGA, CSP, Flip Chip. The paper outlines lead-free ball analysis in comparison to conventional solder balls for BGA and chip size packages. The important points of interest are the description of processability related to existing ball attach procedures, requirements of interconnection properties and the knowledge gained the board level reliability. Both are the primary acceptance criteria for implementation. Knowledge about melting characteristic, surface tension depend on temperature and organic vehicles, wetting behavior, electrical conductivity, thermal conductivity, specific heat, mechanical strength, creep and relaxation properties, interactions to preferred finishes (minor impurities), intermetallic growth, content of IMC, brittleness depend on solved elements/IMC, fatigue resistance, damage mechanism, affinity against oxygen, reduction potential, decontamination efforts, endo-/exothermic reactions, diffusion properties related to finishes or bare materials, isothermal fatigue, thermo-cyclic fatigue, corrosion properties, lifetime prediction based on board level results, compatibility with rework/repair solders, rework temperatures of modified solders (Impurities, change in the melting point or range), compatibility to components and laminates.

  • PDF

Interfacial Behavior of Water Droplet on Micro-Nano Structured Surfaces (마이크로-나노 구조가 있는 표면에서의 액적 계면 거동 현상에 대한 연구)

  • Kwak, Ho Jae;Yu, Dong In;Kim, Moo Hwan;Park, Hyun Sun;Moriyama, Kiyofumi;Ahn, Ho Sun;Kim, Dong Eok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.5
    • /
    • pp.449-453
    • /
    • 2015
  • Recently, surfaces with micro and nano structures are the focus of various research and engineering fields to enhance wetting characteristics of the surfaces. Hydrophilic surfaces with hierarchical structures are generally characterized by the interfacial behavior of water droplets. In this study, the interfacial behavior of water droplets is experimentally investigated considering the scale of structures. Using the dry etching and conventional lithography method, quantitative hierarchical structured surfaces are developed. The behavior of the liquid-vapor interface on the test sections is visualized using an automatic goniometer and a high-speed camera. On the basis of the visualized data, the interfacial behavior of water droplets is intensively investigated according to surface geometrical characteristics.

A study on the Characteristic of Mask Sheets (마스크 팩 시트의 특성 연구)

  • Jang, Hye-In
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.787-798
    • /
    • 2017
  • This is a study on characteristics according to the material of sheet-type mask packs being sold on the market. The absorption capacities of water soluble components such as purified water, 1.3-propanediol, 1.3-butylene glycol, glycerine, and hyaluronic acid are compared with that of various oils including cyclomethicone, dimethicone, phytosqualane, caprylic capryl triglyceride, grape seed oil, and macadamia nut oil. As a result, all of the water soluble components except purified water showed higher moisture absorption capacity as the viscosity increased. And in case of oil, all oil showed higher oil absorption capacity according to the viscosity. During this test, the mask sheets with the type of acetic acid fermented bio-cellulose showed 500~1,000 times or more absorption capacity on water soluble wetting agent or all oils, which is due to the fine mesh structure seen in the 5,000x enlarged photograph at surface structure. This mesh structure was well recognized on the cross section and these structural features enhance the absorption capacity of water and oil. It is also believed that largely contained water-soluble components and oils facilitate the discharge over time. In addition, since each mask sheet shows their characteristics according to their material, it is intended to be a basic research for manufacturing mask packs good for skin.

Adhesion Properties of UV-curable Acrylic PSA Tape for Automotive Sidemolding and Emblem (자동차용 사이드 몰딩과 엠블럼 적용을 위한 UV 경화형 아크릴 점착 테이프의 점착물성)

  • Park, Ji-Won;Lee, Seung-Woo;Kim, Hyun-Joong;Won, Dong-Bok;Kim, Dong-Bok;Lee, Kang-Shin;Woo, Hang-Soo;Kim, Eun-Ah
    • Journal of Adhesion and Interface
    • /
    • v.12 no.3
    • /
    • pp.81-87
    • /
    • 2011
  • In this study, UV curing and crosslinking process was introduced for synthesis of acrylic foam tape that can be applied to the the automotive assembly process. Polymerized adhesive are laminated to baseform and varying the thickness of specimens were prepared. To measure basic mechanical properties, stainless steel was used. And in the test peel, dynamic shear and t-block were used. The acrylform adhesive show better results compare with typical adhesive and the properties depand on external factors - thick, wetting time -. To analysis functions of acrylic foam adhesive used to automobile production, evaluate the adhesive properties on the various plastic substrate. In PP and PE are categorized low surface energy materials, their properties have not been expressed. But dynamic shear tests show that some properties could be expressed by the difference break mechanism.

Synthesis of Saccharide Nonionic Biosurfactants from Coconut Oil and Characterization of Their Interfacial Properties (코코넛 오일로부터 유래된 당계 비이온 계면활성제 합성 및 계면 특성 연구)

  • Jo, SeonHui;Lee, YeJin;Park, KiHo;Lim, JongChoo
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.435-444
    • /
    • 2019
  • In this study, two types of nonionic saccharide biosurfactants, GP-6 and GP-7, were prepared from coconut oil and the structure of resulting products was investigated by FT-IR, $^1H-NMR$ and $^{13}C-NMR$ spectrophotometer. The interfacial properties of GP-6 and GP-7 were found to be excellent from interfacial property measurements such as critical micelle concentration, static and dynamic surface tensions, interfacial tension, emulsification power, wetting property and foam stability. Detergency test evaluated by using a Terg-o-tometer showed moderately good detergency compared to that of conventional surfactants used in detergent formulations. Biodegradability, acute oral toxicity, acute dermal irritation and acute eye irritation tests revealed that both surfactants possess excellent mildness and superior environmental compatibility indicating the potential applicability to detergent products formulations. In particular, GP-6 can be considered as a strong candidate in detergent formulations since it is more surface active, mild and readily biodegradable than GP-7.

Estimation of Saturation Velocity in Soils During Rainfall using Soil Box Test (모형토조실험을 이용한 강우시 토층의 포화속도 산정)

  • Kim, Chul-Min;Song, Young-Suk;Kim, Hak-Joon
    • The Journal of Engineering Geology
    • /
    • v.25 no.3
    • /
    • pp.377-385
    • /
    • 2015
  • We constructed a model test apparatus to evaluate the dependence of the saturation velocity (Vs) in soils on rainfall intensity (IR). The apparatus comprises a soil box, a rainfall simulator, and measuring sensors. The model grounds (60 cm × 50 cm × 15 cm) were formed by Joomunjin standard sand with a relative density of 75%. The rainfall simulator can control the rainfall intensity to reenact the actual rainfall in a soil box. Time Domain Reflectometer (TDR) sensors and tensiometers were installed in the soils to measure changes in the volumetric water content and matric suction due to rainfall infiltration. During the tests, the soil saturation was determined by raising the groundwater table, which was formed at the bottom of the soil box. [Please check that the correct meaning has been maintained.] The wetting front did not form at the ground surface during rainfall because the soil particles were uniform and the coefficient of permeability was relatively high. Our results show that the suction stress of the soils decreased with increasing volumetric water content, and this effect was most pronounced for volumetric water contents of 20%-30%. Based on a regression analysis of the relationship between rainfall intensity and the average saturation velocity, we suggest the following equation for estimating the saturation velocity in soils: Vsavg (cm/sec) = 0.068IR (mm/hr).