• Title/Summary/Keyword: Surface wave investigation

Search Result 134, Processing Time 0.032 seconds

Influence of Adjacent Structures on Surface-Wave Dispersion Characteristics and 2-D Resistivity Structure (표면파 분산특성과 전기비저항 분포특성에 대한 인접구조물의 영향)

  • Joh, Sung-Ho;Kim, Bong-Chan;Cho, Mi-Ra;Kim, Suhk-Chol;Youn, Dae-Hee;Hong, Jae-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1318-1327
    • /
    • 2008
  • Geotechnical sites in urban areas may have embedded structures such as utility lines and underground concrete structures, which cause difficulties in site investigation. This study is a preliminary research to establish knowledge base for developing an optimal technique for site investigation in urban areas. Surface-wave method and resistivity survey, which are frequently adopted for non-destructive site-investigation for geotechnical sites, were investigated to characterize effects of adjacent structures. In case of surface wave method, patterns of wave propagation were investigated for typical sets of multi-layered geotechnical profiles by numerical simulation based on forward modeling theory and field experiments for small-size model tests and real-scale tests in the field. In case of resistivity survey, 3-D finite element analyses and field tests were performed to investigate effects of adjacent concrete structures. These theoretical and experimental researches for surface-wave method and resistivity survey resulted in establishing physical criteria to cause interference of adjacent structures in site investigation at urban areas.

  • PDF

Analytical Study for dispersed Phase Velocity Information of Love Waves (러브파의 위상속도 분산정보에 관한 해석적 연구)

  • 이일화
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.4
    • /
    • pp.391-399
    • /
    • 2004
  • This paper investigated the dispersion characteristics of horizontal surface waves as means to apply conversional SASW techniques. To verify this proposal, 3D finite element analysis and Transfer matrix solution were performed. SH wave(Love waves) has the some advantages in comparison with Rayleigh wave. Representatively, Love wave has a characteristics not affected by compression wave. These characteristics have the robust applicability for the surface wave investigation techniques. In this study, for the purpose of employing Love wave in the SASW method, the dispersion characteristics of the Love wave was extensively investigated by the theoretical and numerical approaches. The 3-D finite element and transfer matrix analyses for the half space and two-layer systems were performed to determine the phase velocities from Love wave as well as from both the vertical and the horizontal components of Rayleigh wave. Preliminary, numerical simulations and theoretical solutions indicated that the dispersion characteristics of horizontal surface wave(Love waves) can be sufficiently sensitive and appliable to SASW techniques.

Hybrid Integration of P-Wave Velocity and Resistivity for High-Quality Investigation of In Situ Shear-Wave Velocities at Urban Areas (도심지 지반 전단파속도 탐사를 위한 P-파 속도와 전기비저항의 이종 결합)

  • Joh, Sung-Ho;Kim, Bong-Chan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1C
    • /
    • pp.45-51
    • /
    • 2010
  • In urban area, design and construction of civil engineering structures such as subway tunnel, underground space and deep excavation is impeded by unreliable site investigation. Variety of embedded objects, electric noises and traffic vibrations degrades the quality of site investigation, whatever the site-investigation technique would be. In this research, a preliminary research was performed to develop a dedicated site investigation technique for urban geotechnical sites, which can overcome the limitations of urban sites. HiRAS (Hybrid Integration of Surface Waves and Resistivity) technique which is the first outcome of the preliminary research was proposed in this paper. The technique combines surface wave as well as electrical resistivity. CapSASW method for surface-wave technique and PDC-R technique for electrical resistivity survey were incorporated to develop HiRAS technique. CapSASW method is a good method for evaluating material stiffness and PDC-R technique is a reliable method for determination of underground stratification even in a site with electrical noise. For the inversion analysis of HiRAS techniuqe, a site-specific relationship between stress-wave velocity and resistivity was employed. As for outgrowth of this research, the 2-D distribution of Poisson's ratio could be also determined.

Experimental and numerical investigation of a surface-fixed horizontal porous wave barrier

  • Poguluri, Sunny Kumar;Kim, Jeongrok;George, Arun;Cho, I.H.
    • Ocean Systems Engineering
    • /
    • v.11 no.1
    • /
    • pp.1-16
    • /
    • 2021
  • Experimental and numerical investigations were conducted to study the performance of a surface-fixed horizontal porous wave barrier in regular waves. The characteristics of the reflection and transmission coefficients, energy dissipation, and vertical wave force were examined versus different porosities of the barrier. Numerical simulations based on 3D Reynolds Averaged Navier-Stokes equations with standard low-Re k-ε turbulent closure and volume of fluid approach were accomplished and compared with the experimental results conducted in a 2D wave tank. Experimental measurements and numerical simulations were shown to be in satisfactory agreement. The qualitative wave behavior propagating over a horizontal porous barrier such as wave run-up, wave breaking, air entrapment, jet flow, and vortex generation was reproduced by CFD computation. Through the discrete harmonic decomposition of the vertical wave force on a wave barrier, the nonlinear characteristics were revealed quantitatively. It was concluded that the surface-fixed horizontal barrier is more effective in dissipating wave energy in the short wave period region and more energy conversion was observed from the first harmonic to higher harmonics with the increase of porosity. The present numerical approach will provide a predictive tool for an accurate and efficient design of the surface-fixed horizontal porous wave barrier.

Short-Array Beamforming Technique for the Investigation of Shear-Wave Velocity at Large Rockfill Dams (대형 사력댐에서의 전단파속도 평가를 위한 단측선 빔형성기법)

  • Joh, Sung-Ho;Norfarah, Nadia Ismail
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.207-218
    • /
    • 2013
  • One of the input parameters in the evaluation of seismic performance of rockfill dams is shear-wave velocity of rock debris and clay core. Reliable evaluation of shear-wave velocity by surface-wave methods requires overcoming the problems of rock-debris discontinuity, material inhomogeneity and sloping boundary. In this paper, for the shear-wave velocity investigation of rockfill dams, SBF (Short-Array Beamforming) technique was proposed using the principles of conventional beamforming technique and adopted to solve limitations of the conventional surface-wave techniques. SBF technique utilizes a 3- to 9-m long measurement array and a far-field source, which allowed the technique to eliminate problems of near-field effects and investigate local anomalies. This paper describes the procedure to investigate shear-wave velocity profile of rockfill dams by SBF technique and IRF (Impulse-response filtration) technique with accuracy and reliability. Validity of the proposed SBF technique was verified by comparisons with downhole tests and CapSASW (Common-Array-Profiling Spectral-Analysis-of-Surface-Waves) tests at a railroad embankment compacted with rock debris.

Numerical Investigation of Anti-Diffusion Source Term for Free-Surface Wave Flow

  • Park, Sunho;Lee, Heebum;Rhee, Shin Hyung
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.2
    • /
    • pp.48-60
    • /
    • 2016
  • Accurate simulation of free-surface wave flows around a ship is very important for better hull-form design. In this paper, a computational fluid dynamics (CFD) code which is based on the open source libraries, OpenFOAM, was developed to predict the wave patterns around a ship. Additional anti-diffusion source term for minimizing a numerical diffusion, which was caused by convection differencing scheme, was considered in the volume-fraction transport equation. The influence of the anti-diffusion source term was tested by applying it to free-surface wave flow around the Wigley and KCS model ships. In results, the wave patterns and hull wave profiles of the Wigley and KCS model ships for various anti-diffusion coefficients showed quite close patterns. While, the band width of the water volume-fraction values between 0.1 to 0.9 at the Wigley and KCS model hull surfaces was narrowed by considering the anti-diffusion term. From the results, anti-diffusion source term decreased free-surface smearing.

The Evaluation of Roadbed Stiffness using Continuous Surface-Wave (CSW) Method (연속 표면파(CSW)기법을 활용한 노반 강성평가에 관한 연구)

  • Ko Hak-Song;Joh Sung-Ho;Hwang Sun-Kun;Lee Il-Hwa
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.868-873
    • /
    • 2004
  • Recently, The surface-wave method has widely been used for the site investigation due to the economic advantage and the improved reliability. The typical surface-wave methods currently available are SASW method, MASW method and CSW method. The CSW method has a potential of high-quality measurement, but its inherent problems limited its use to the special cases such as the compaction-quality control. The CSW method uses the steady-state harmonic vibration for the seismic source as in the steady-state Rayleigh-wave method, which is superior to the impact source used for other methods. This study proposed a new procedure to solve the inherent problems of the CSW method and to improve the reliability of the CSW measurements. To verify the validity of the proposed in this study, the SASW results were compared with the CSW results for the numerical simulation of the CSW testing. Also, the feasibility of the proposed method was verified using the field measurements at a geotechnical site.

  • PDF

A study on new soil investigation method using seismic waves generated by dynamic penetration blows

  • Saito Hideki
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.3-9
    • /
    • 2005
  • In order to obtain more reliable data for the information on the ground, a new site Investigation method is proposed, in which seismic waves (S-waves) generated by the Swedish Ram Sounding Test (SRS) are used. It is indicated that the energy transferred from the hammer to the rod in SRS's is much more stable, compared to SPT's. A series of SRS with measurements of seismic waves at the ground surface were carried out to clarify the characteristics of seismic wave propagation in the ground. As the results of comparison between seismic S-wave amplitudes and $N_d$ (blow count for 20 cm penetration in SRS), it was found that amplitudes of S-waves generated by SRS correlate well with $N_d$. The amplitude of the S-wave is thought to be more adequate parameter for the soil strength and rigidity than $N_d$.

  • PDF

Investigation on bragg reflection of surface water waves induced by a train of fixed floating pontoon breakwaters

  • Ouyang, Huei-Tau;Chen, Kue-Hong;Tsai, Chi-Ming
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.6
    • /
    • pp.951-963
    • /
    • 2015
  • The water wave characteristics of Bragg reflections from a train of fixed floating pontoon breakwaters was studied numerically. A numerical model of boundary discretization type was developed to calculate the wave field. The model was verified by comparing to analytical data in literature and good agreements were achieved. Series of parametric studies were conducted systematically to investigate the dependence of the reflected coefficients by the Bragg scattering on the design variables, including the spacing between the breakwaters, the total number of installed breakwaters, the draft and width do the breakwater, and wave length. Certain wave characteristics of the Bragg reflections were observed and discussed in details which might be of help for practical engineering applications in shoreline protection from incident waves.

A Study of Numerical Wave Tank for 3-Dimensional Free Surface Wave Simulation (3차원 자유표면파 모사를 위한 수치 파수조에 관한 연구)

  • Ha, Y.R.;Kim, Y.J.
    • Journal of Power System Engineering
    • /
    • v.15 no.6
    • /
    • pp.27-34
    • /
    • 2011
  • The increasing capabilities of the computers enable us to utilize various numerical schemes for the time-domain simulations concerned with 3-dimensional free-surface wave problems. There are still difficulties to solve such kind of problems, however. That's because long time simulations with large computational domain are needed in time-domain analysis. So, we need faster and more efficient numerical schemes to get the solutions practically for these problems. In this paper, a high-order spectral/boundary-element method is used for the numerical investigation of physics involved in wave-body interaction. This method is one of the most efficient numerical methods by which the nonlinear gravity waves can be simulated and hydrodynamic forces also can be calculated in time-domain. To get the robust study in these topics, various numerical tests are performed and compared with others' works.