• Title/Summary/Keyword: Surface water sample

Search Result 387, Processing Time 0.029 seconds

Evaluation of Cleanness and Physical Properties of W/O Microemulsion (W/O Microemulsion 세정제의 물성 및 세정성 평가)

  • Lee, Myung Jin;Han, Ji Won;Lee, Ho Yeol;Han, Sang Won;Bae, Jae Heum;Park, Byeong Deog
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.769-777
    • /
    • 2002
  • Using four components - nonionic surfactants, water, hydrocarbon oil and an alcohol as cosurfactant, 12 types of cleaning agents were prepared, and their physical properties such as surface tension, viscosity, electroconductivity and phase stability were measured. As the formulated cleaning agents have low surface tensions(30.5-31.1 dyne/cm) and low viscosities (1.6-7.2 c.p.), they are satisfied with the general physical properties of water-in-oil(W/O) microemulsions for their industrial use. They showed a tendency that their temperature range for stable one-phase microemulsion decreased in accordance with the increase of alcohol/surfactant(A/S) ratio in the formulations. However, the temperature range of one-phase microemulsion was much more affected by hydrophilic lipophillic balance(HLB) value of the nonionic surfactant which increased its temperature range and it increased in accordance with the higher HLB value in the formulations. And the maximum content of water which can keep stable one-phase W/O microemulsion was measured at each sample. In addition, their temperature range for stable one-phase microemulsion was also measured. It was confirmed that the selection of surfactant type was very important for formulating a cleaning agent, since the W/O microemulsion system with the nonionic surfactant of the lower HLB value showed better cleaning efficacy that of the higher HLB value for abietic acid as a soil, which was used for preparing a rosin-type flux. In the formulated cleaning agents with the increase of A/S ratio in the formulations, however, there was no significant difference in cleaning efficacy. It was investigated that the differences of their cleaning efficacy was affected by the change of the condition of temperature and sonicating frequency as important factors in the industrial cleaning. That is, the higher, their cleaning temperature and the lower, their sonicating frequency, the more increased, their cleaning efficacy. Furthermore, using optical instruments like UV/Visable Spectrophotometer and FT-IR Spectrometer, their cleaning efficacy for abietic acid was measured. The removal of soil from the contaminated rinse water was measured by gravity separation method in the rinse bath. As a result, the cleaning agent system having the nonionic surfactant of HLB value 6.4 showed over 85% water-oil separation efficacy at over $25^{\circ}C$. Therefore, it was demonstrated in this work that the formulating cleaning agents were very effective for cleaning and economical in the possible introduction of water recycling system.

TENSILE STRENGTHS OF PRE-LIGATURED BUTTON WITH SEVERAL TYPES OF CONTAMINATION IN DIRECT BONDING PROCEDURE WHICH CAN HAPPEN DURING THE SURGICAL EXPOSURE OF UNERUPTED TEETH (치아의 견인을 위한 버튼 접착시 오염이 인장강동에 미치는 영향)

  • Kim, Seong-Oh;Choi, Byung-Jai;Lee, Jae-Ho;Sohn, Heung-Kyu
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.25 no.2
    • /
    • pp.400-420
    • /
    • 1998
  • We already know that it is very difficult to obtain an "isolated field" for direct bonding during the surgical exposure of unerupted teeth. The aim of this in-vitro study is to simulate the clinical situation of forced eruption and to evaluate the tensile strengths of preligatured button with several types of contamination which can happen during the surgical exposure of unerupted teeth. Four orthodontic direct bonding systems were used. ($Ortho-One^{TM}$, $Rely-a-Bond^{(R)}$, $Ortho-Two^{TM}$, Phase $II^{(R)}$) Each material was divided into four groups(n=20) : Group 1. (Control, no contamination), Group 2. (Rinse etching agent with saline instead of water), Group 3. (Blood contamination of etched surface for 30 seconds), Group 4. (Blood contamination of primed surface for 30 seconds) 320 bovine anterior permanent teeth were divided into the above mentioned 16 groups. Enamel surface was flattened and ground under water coolant. Pre-ligatured buttons were prepared to the same form. (Cut 0.25 ligature wire 10 cm in length. Twist the ligature wire 30 times clockwise. Mark the wire 15mm and 35mm points from button. Make a loop sticking two points together and twist the loop 6 times counterclockwise.) The bonded specimens were stored at $37^{\circ}C$ saline solution for 3 days. Then the tensile strength of each sample was measured with Instron universal testing machine, crosshead speed of 0.5mm/min. The following results were obtained: 1. As compared to control groups (Group 1) of each material, Rely-a-Bond had a significantly lower mean tensile strengths than other material. (p<0.01) 2. In Group 2. of Ortho-One and Rely-a-Bond, the mean tensile strengths decreased about 7.7% and 11.1%, respectively with statistical significances. (p<0.05) 3. In Group 2. of Ortho-Two and Phase II, the mean tensile strengths did not decrease. 4. In Group 3. of Ortho-One, Rely-a-Bond, Ortho-Two, and Phase II, the mean tensile strengths decreased about 60.8%, 56.1%, 60.2%, and 46.0%, respectively with statistical significances. (p<0.01) 5. In Group 4. of Ortho-One and Rely-a-Bond, the mean tensile strengths did not decrease. 6. In Group 4. of Ortho-Two and Phase II, the mean tensile strengths were decreased about 20.95% and 22.28%, respectively with statistical significances. (p<0.01) There were formations of a hump shaped mass from bonding resin under blood contamination which disturbed direct bonding procedure. According to Reynolds, the proper bond strength for clinical manipulation should be at least 45N or about 4.5Kg.F. According to these results, it can be concluded that Ortho-One could be used during surgical exposure of unerupted teeth. In any case, blood contamination of the etched surface should be avoided, but the blood contamination of primed surface of Ortho-One may not decrease bond strength. Just 'blowing-out' is enough to remove blood from primed surface of Ortho-One. You can verify the clean surface of the primer of Ortho-One after blowing out the blood contamination.

  • PDF

Autotrophic Perchlorate-Removal Using Elemental Sulfur Granules and Activated Sludge: Batch Test (원소 황 입자와 활성 슬러지를 이용한 독립영양방식의 퍼클로레이트 제거: 회분배양연구)

  • Han, Kyoung-Rim;Kang, Tae-Ho;Kang, Hyung-Chang;Kim, Kyung-Hun;Seo, Deuk-Hwa;Ahn, Yeong-Hee
    • Journal of Life Science
    • /
    • v.21 no.10
    • /
    • pp.1473-1480
    • /
    • 2011
  • Perchlorate ($ClO_4^-$) is a contaminant found in surface water and soil/ground water. Microbial removal of perchlorate is the method of choice since microorganisms can reduce perchlorate into harmless end-products. Such microorganisms require an electron donor to reduce perchlorate. Conventional perchlorate-removal techniques employ heterotrophic perchlorate-reducing bacteria that use organic compounds as electron donors to reduce perchlorate. Since continuous removal of perchlorate requires a continuous supply of organic compounds, heterotrophic perchlorate removal is an expensive process. Feasibility of autotrophic perchlorate-removal using elemental sulfur granules and activated sludge was examined in this study. Granular sulfur is relatively inexpensive and activated sludge is easily available from wastewater treatment plants. Batch tests showed that activated sludge microorganisms could successfully degrade perchlorate in the presence of granular sulfur as an electron donor. Perchlorate biodegradation was confirmed by molar yield of $Cl^-$ as the perchlorate was degraded. Scanning electron microscope revealed that rod-shaped microorganisms on the surface of sulfur particles were used for the autotrophic perchlorate-removal, suggesting that sulfur particles could serve as supporting media for the formation of biofilm as well. DGGE analyses revealed that microbial profile of the inoculum (activated sludge) was different from that of the biofilm sample obtained from enrichment culture that used sulfur particles for $ClO_4^-$-degradation.

Engineering Properties of Mylonite in the Youngju Area (영주지역 압쇄암의 공학적 특성 연구)

  • Kim, Sung-Wook;Choi, Eun-Kyeong;Yang, Tae-Sun;Lee, Kyu-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.35-43
    • /
    • 2011
  • The area to be studied is the place where the main line rail way will be constructed in accordance with the scheduled construction project of Yeongju dam, and is a fold and mylonite zone over several km that is formed by ductile-shearing effect. The ductile shear zone, which has been transformed by faulting for long geological time, shows a complicated geological structure. Due to the recrystallization of mineral caused by transformation in deep underground (>8km), a mylonite zone with lamellar structure has properties distinguished from other fault zones formed by transformation near earth surface <2km). To see the properties of mylonite, this study analyzed the transformation rate of sample rocks and the shape of constriction structure accompanied with transformation. While the transformation of fault zone shows a round oblate, the mylonite zone shows a prolate form. Transformation rate in fault zone was measured to be less than 1.2 compared to the state before transformation while the measured rate in mylonite zone was 2.5 at most. Setting the surface of discontinuity as the base, the unconfined compressive strength of slickenside can be categorized in sedimentary rocks, and a change of strength was observed after water soaking over certain time. Taking into account that the weathering resistance of the rock based on mineral and chemical organization is relatively higher, its engineering properties seems to result from the shattered crack structure by crushing effect. When undertaking tunnel construction in mylonite zone, there should be a special care for the expansion of shattered cracks or the fall of strength by influx of ground water.

Performance Evaluation of Nitrogen Oxide Removal by Air Purification Blocks with Titanium Dioxide (이산화티타늄을 이용한 대기정화 블록의 질소산화물 제거 성능 평가)

  • Oh, Ri-On;Kim, Hwang-Hee;Park, Sung-Ki;Cha, Sang-Sun;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.5
    • /
    • pp.39-46
    • /
    • 2020
  • This study evaluated the nitrogen oxide (NOx) removal efficiency by air purification concrete blocks with titanium dioxide (TiO2). The concrete in the mixtures had a 30% water:cement ratio, to which TiO2 was added at 0%, 5%, and 10% of cement weight. The compressive strength reduction rate and removal efficiency of NOx were investigated. The result of the compressive strength test in the study indicated that addition rate of TiO2 did not lead to signifcant effect. In terms of the average removal efficiency of NOx, mix No. 1 using a TiO2 mixing ratio of 0% had a removal efficiency of 0.57% on average; thus, the removal effect w as not significant. For the other samples prepared by mixing, the average removal efficiencies for mix No. 2 (5% TiO2) were 58.86% and 62.05% for normal and washing surface treatments, respectively, and those of sample No. 3 (10% TiO2) were 59.94% and 67.61%. mixs No. 4 (5%) and No. 5 (10%), in which TiO2 diluted with distilled water was sprayed onto the block surface, had an average NOx removal efficiency of 61.72% and 68.48%, respectively. In terms of NOx removal efficiency, Mixs No. 3 and No. 5 with 10% TiO2 were better than Mixs No. 2 and No. 4 with 5% TiO2. In addition, analyzing the NOx removal efficiency results from the fixing method, it was capable to apply mixing (washing) and the diluted spray methods. Therefore, it was found that the diluted spray method applied in this study can be employed in any manufacture of air purification concrete blocks.

Degradation Characteristics of Cross-linked Hyaluronic Acid Membrane (가교된 히아루론산 막의 분해 특성)

  • Cheong, Seong-Ihl;Cho, Gu-Hyun
    • Membrane Journal
    • /
    • v.19 no.4
    • /
    • pp.310-316
    • /
    • 2009
  • The degradation characteristics of cross-linked lactide/hyaluronic acid (LA/HA) membranes were investigated for purpose of applying to tissue engineering. The lactide/hyaluronic acid cross-linked with 1,3-butadiene diepoxide (BD) and 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) was degradated in deionized water in water bath at $37^{\circ}C$. As the LA/HA mole ratio or crosslinking agent concentration decreased, the degradation rate of the crosslinked membranes increased. In order to investigate the structure change of the membrane in the degradation process, the control sample and 3, 6, 9 days-degradated samples were analysed by the nuclear magnetic resonance spectroscopy. In case of the membranes crosslinked with EDC, the HA-EDC bonding structure was degradated slowly whereas the HA-LA bonding structure was degradated quickly and dissappeared completely after 6 days. In case of the membranes crosslinked with BD, all the crosslinked bonding structure degradated slowly. The HA-BD bonding structure maintained its original state about 89, 83% in case of 3, 6 days-degardated samples respectively whereas the HA-LA bonding structure maintained its original state about 83, 65%. The scanning electron microscopy of the degradated membranes showed that the pore density in the surface, and the structure in the surface and cross section, of the before and after-degradation membranes did not change greatly, so the membranes was shown to be applied to materials for tissue engineering.

Optimal hot water extraction conditions of fermented Polygonum multiflorum root by Lentinula edodes pegler mycelials using response surface methodology (반응표면 분석법에 의한 표고균사체발효 적하수오 열수 추출조건의 최적화)

  • Oh, Junseok;Hong, Jae-Heoi;Park, Tae-Young;Shin, Ji-eun;Kim, Kyung-Je;Jin, Seong-Woo;Ban, Seung-Eon;Koh, Young-Woo;Im, Seung-Bin;Seo, Kyoung-Sun
    • Journal of Mushroom
    • /
    • v.16 no.1
    • /
    • pp.22-30
    • /
    • 2018
  • This study was performed to determine optimal extraction conditions of fermented Polygonum multiflorum root by Lentinula edodes (JMI10079) Pegler mycelials using response surface methodology. The independent factors were extraction temperature (X1: $40-100^{\circ}C$), extraction time (X2: 2-10 hrs.), and the ratio of water to sample (X3: 33-100 mg/mL). Their effects were assessed on dependent variables of the extract properties, which included soluble solid contents (Y1), $^{\circ}Brix$ of sample extract (Y2), total polyphenol content (Y3), total flavonoid content (Y4), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical cation scavenging activity (Y5) and 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity (Y6). The experimental data obtained were fit to a second-order polynomial equation. The optimal extraction conditions for fermented P. multiflorum root were: X1: $91.22^{\circ}C$, X2: 7.72 hrs, and X3: 39.71 mg/mL.

Optimization for Pretreatment Condition according to Salt Concentration and Soaking Time in the Preparation of Perilla Jangachi (소금 농도와 삭힘 시간에 따른 깻잎 장아찌의 전처리 조건의 최적화)

  • Lee, Hye-Ran;Nam, Sang-Min;Lee, Jong-Mee
    • Journal of the Korean Society of Food Culture
    • /
    • v.17 no.1
    • /
    • pp.70-77
    • /
    • 2002
  • Jangachi(salted and fermented vegetable) has been made by Korean traditionally using several kinds of vegetables, which is a good source of variety of nutrients and vitamins. There are many methods for making Jangachi. Generally soy sauce Jangachi is made through two steps. First, as a pretreatment, vegetables are soaked in salt water. Second, soaked vegetables are fermented in various ingredients like soy sauce, sugar, garlic, ginger and so on. This study was performed to observe changes in contents of chemical components and sensory evaluation of pretreated perilla leaf. Perilla leaf was soaked in water with different levels of salt concentration(2, 5 and 8 %) and soaking time(1, 3 and 5 days). The optimal level of salt and soaking time was determined with the results of sensory evaluation by response surface methodology and analysis of composition. The moisture contents decreased as the levels of salt and soaking time increased. The moisture content of untreated sample was 87.5 % and when soaked for 5 days in the water of 8 % salt concentration, it became 78.27 %. pH of Perilla leaf was high in high levels of salt concentration and short soaking time. Total acidity was so opposite to pH that was low in high levels of salt concentration and short soaking time. In the water of 8 % salt concentration, total acidity was 0.14 % when soaked for 1 day, 0.20 % for 3 days and 0.30 % for 5 days. Salt contents became greater as the soaking time increased. As the results of puncture test, soaked Perilla leaf's toughness increased as the levels of salt increased and soaking time decreased. Among the sensory attributes, greenness increased as the levels of salt concentration increased when soaked for more than 3 days. Saltiness and bitterness became greater as the levels of salt concentration increased. Perilla flavor decreased with the short soaking time. Off-flavor increased with the increased levels of soaking time and decreased salt concentration when soaked for more than 3 days. Toughness decreased as the levels of soaking time increased. Crispness increased with the increased levels of salt concentration. The condition of pretreated Perilla was optimum when it soaked for 42 hours in 4 % salt concentration.

Distribution of Organic and Inorganic Arsenic Species in Groundwater and Surface Water Around the Ulsan Mine (울산광산 주변지역 수계에서 유기 및 무기 비소 종 분포)

  • Kim, Youn-Tae;Woo, Nam-Chil;Yoon, Hye-On;Yoon, Cheol-Ho
    • Economic and Environmental Geology
    • /
    • v.39 no.6 s.181
    • /
    • pp.689-697
    • /
    • 2006
  • Distribution and speciation of arsenic in water resources was investigated in the Ulsan mine area. In 62% of uoundwater samples from the mine area, total As concentrations exceeded 0.05 mg/l, the Korean Drinking Water Standard. As(V) was the major type in groundwater with minor As(III). Arsenic species appeared to be in transition stages following redox changes after exposure to the air through the monitoring wells. In areas around the mine, the mine and Cheongog spring appeared to be the sources of arsenic contamination of water resources. The spring showed 0.345 mg/1-As, as much as seven times of the Korean standard. Groundwater and stream samples showed As-concentrations greater than 0.05 mg/l in 30% and 33% samples, respectively, and 60 and 67% of samples exceeded 0.01 mg/l of WHO guideline, respectively. Again, As(V) was a dominant species, however, several samples had As(III) in appreciable levels. In one stream sample, organic species including DMA and AsB were detected in low levels, probably resulted from transformation or related biogeochemical processes.

Variation of Copper Content in Paddy Soil and Rice from Mangyeong River Area (만경강 유역의 논토양과 수도체중 Cu 함량의 변화)

  • Kim, Seong-Jo;Lee, Man-Sang;Ryu, Taek-Kyu;Kim, Un-Sung;Yoon, Ki-Woun;Baek, Seung-Hwa
    • Korean Journal of Environmental Agriculture
    • /
    • v.13 no.1
    • /
    • pp.10-17
    • /
    • 1994
  • To investigate differences with the polluted sources on Cu contents in soils and paddy rices under water pollutions, soils with the distance, the surface(0-15㎝ depth) and subsurface(15-30㎝ depth) in 1982 and 1990, and rice plants at the soil sampling sites in 1990 were separately sample at Mangyeong River area under the influence of municipal and industrial waste water from Jeonju city. Soil samples were extracted with $4M-HNO_3$ and plant samples were digested with mixture of $HNO_3$ and $HClO_4$ for analyzing Cu, Cd, Zn, Pb by atomic absorption spectrophotometry. Cu contents in soils ranged from 5.20 to 71.70 mg $kg^{-1}$. Average Cu level in 1990 was higher than that in 1982. Variation of Cu content with the distances from the source of waste water in 1990 was more regularly decreased than that in 1982. A significant correlation was observed between Cu contents in leaf sheath of rice plant and Cu, Zn and Pb contents in soils. Cu contents in soil was correlated with Zn and Pb in soil at area affected by waste water, regardless of years and soil depths. Cu contents in brown rice ranged from 0.4 to 10 mg $kg^{-1}$, and it was the lowest in parts of rice plant, and Cu content in panicle axis was 2.3 times higher than that in brown rice.

  • PDF