• Title/Summary/Keyword: Surface viscosity

Search Result 902, Processing Time 0.024 seconds

Use of Cationic PAM as a Surface Sizing Additive to Improve Paper Properties

  • Seo, Man-Seok;Lee, Hak-Lae;Youn, Hye-Jung
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.245-250
    • /
    • 2006
  • This study was focused on the use of cationic PAM (Polyacrylamide) as a surface sizing additive to improve the surface sizing properties of paper. Effects of the ionic property, viscosity and charge density of PAM on bending stiffness of surface sized papers were investigated. Use of cationic PAM as a surface sizing additive improved bending stiffness while addition of anionic PAM did not show any effect. Increase of starch holdout with the addition of cationic PAM was attributed as a prime reason of stiffness increase. Viscosity of PAM was one of the most important factors affecting surface sizing due to its influence on the interaction between cationic PAM and oxidized starch solution. Greater improvement of bending stiffness of paper was obtained when high charged PAM was used as an additive. The order of addition was found to have significant influence on the effect of additives since it influences the formation of network structure among starch, cationic PAM, and SA (styrene acrylic acid copolymer). Investigation on the penetration of starch solution was carried out with CLSM (Confocal Laser Scanning Microscopy), and it was shown that the addition of cationic PAM to oxidized starch solution made starch molecules stay on the paper surface rather than penetrating into the paper structure because of the electrostatic interaction between negatively charged fibers and positively charged cationic PAM.

  • PDF

A Study of the Thickness Characteristics of the Liquid Sheet Formed by an Impinging Jet onto a Plate (평판 충돌 제트로 생성되는 액막의 두께 분포 특성 연구)

  • Kim, M.S.;Oh, J.H.;Jeong, H.M.;Kang, B.S.
    • Journal of ILASS-Korea
    • /
    • v.27 no.2
    • /
    • pp.77-83
    • /
    • 2022
  • In this study, the thickness of the liquid sheet formed by a low speed impinging jet onto a flat plate was measured by the direct contact method. The spatial distribution characteristics of the sheet thickness in the radial and circumferential directions, and the effects of jet velocity and liquid viscosity were analyzed. The measurement results were compared with the theoretical predictions. The wavy surface was observed in the case of low viscosity water, but not in the high viscosity aqueous glycerol solutions. The sheet thickness increased as the circumferential angle increased or the distance from the impinging point increased, but the thickness decreased as the circumferential angle increased around the impinging point. As the jet speed increased, the sheet thickness decreased, and the sheet thickness increased as the liquid viscosity increased. Comparison with the theoretical predictions showed that the measurement results agreed well in the case of low viscosity water or high viscosity liquids around the impinging point. The distribution characteristics of the sheet thickness can provide useful means for prediction of spray characteristics in splash plate injectors.

Study on the Peel off Style Low Viscosity Epoxy and Separation Media for a Moving Historic Sites (유구 이전 전용 저점도형 에폭시와 박리제에 관한 연구)

  • Han, Won-Sik;Hong, Tae-Kee;Park, Gi-Jung;Lim, Sung-Jin;Wi, Koang-Chul
    • Journal of Conservation Science
    • /
    • v.24
    • /
    • pp.37-42
    • /
    • 2008
  • Stability of the moving historic sites have something to do with the degree of easiness of work as well as physical property of polymer product. These agents should be able to use without the effect of outer environments like water or low temperature and must have stability during progress of working the peel off Urethane pre-product from Epoxy surface. So, we synthesized low viscosity epoxy resin and hardener with best physical quality and separation media for the moving of historical sites. These products have very good tension strength, adhesion strength, low viscosity and various physical properties that the users want. Particularly, separation media products have good separation of Urethane pre-products surface and Epoxy final product surface.

  • PDF

The analysis of film flow around rotating roller partially immersed in ink (잉크에 부분적으로 잠겨 회전하는 롤 주위의 액막 유동 해석)

  • Yu, Seung-Hwan;Kang, Soo-Jin;Lee, Kwan-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2279-2284
    • /
    • 2007
  • This study is intended to analyze the effect of thin ink-film thickness around rotating printing roll on the printing quality in the gravure printing process which is used for making electronics circuit like a RFID tag with a conductive ink. The present work numerically estimates the film thickness around rotating roller partially immersed in ink, for which the volume of fluid (VOF) method was adopted to figure out the film formation process around rotating roller. Parameter studies were performed to compare the effect of ink viscosity, surface tension, roller rotating speed, immersed angle on the film thickness. The result indicates that the film thickness has a strong dependency on the fluid viscosity, while the surface tension has negligible effect.

  • PDF

Effect of drawbead process parameters on the drawing characteristics of sheet metals for automotive parts (자동차용 판재 성형시 드로우비드 공정인자별 인출특성에 대한 연구)

  • 김원태;이동활;강우순;서만석;문영훈
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.140-143
    • /
    • 2003
  • The drawbead is an important part in sheet metal forming for automotive part and its effect is affected by various process parameters. Therefore in this study, drawbead friction test was performed at various process parameters - panels (cold rolled and galvanized sheet steel), lubricants (having three different viscosities), bead materials(steel, iron) and surface treatment of bead (Cr plating). Circular shape bead has been used for the test. The results show that friction and drawing characteristics were mainly influenced by the nature of zinc coating, viscosity of lubricants, surface treatment of a bead and hardness of coated layer.

  • PDF

Monitoring on Extraction Conditions of Old Pumpkin Using Response Surface Methodology (반응표면분석법에 의한 늙은 호박 추출조건의 모니터링)

  • 정용진
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.3
    • /
    • pp.466-470
    • /
    • 2001
  • Response surface methodology was used for monitoring extraction conditions, based on quality properties of old pumpkin extracts. Hunter's color L value of extracts was maximized at 101℃, 2.6 hr and decreased gradually after maximum point. The polynomial equation for Hunter's color L value showed 10% of significance level and 0.8799 of R². Hunter's color a value was minimized at 117℃, 3.9 hr and R² of polynomial equation was 0.9852 within 1% significance level. Hunter's color b value and ΔE value increased as the extracting temperature and time increased. Extraction yield of old pumpkin was maximized at 110℃, 4 hr and increased in proportional to the extracting temperature and time, but decreased after 113℃ and 2 hr. Viscosity of pumpkin extracts were maximized at 120℃, nearly 3 hr. R² of polynomial equations for yield, viscosity and sugar content were 0.9532, 0.9812 and 0.8869, respectively. Optimum ranges of extraction conditions for quality properties of old pumpkin were 102∼109℃, 2.5∼3.5 hr, respectively. Predicted values at the optimum extraction condition agreed with experimental values.

  • PDF

Visualization of surface structures coated by electrospun polymers (고분자 용액이 전기방사된 표면의 구조 가시화)

  • Lee, Saebom;Lee, Minki;Yang, Sanghyeok;Kim, Seunghyun;Kim, HyeongJin;Sung, Seokwon;Lee, Minseong;Lee, Jinkee
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.3
    • /
    • pp.40-46
    • /
    • 2018
  • The surface structure of the electrospun polymer fibers depends on the polymer concentration, the type of solvent used, applied voltage and so on. To make a desired surface, it is important to understand the effects of the physicochemical properties to form a stable Taylor cone and jet dispensation. We observed the formation of Taylor cone and a consequent structure of fiber by controlling the parameters of applied voltage, solution concentration, solvent and collector effectively. Once the surfaces were fabricated, the structures were analyzed using optical imaging technologies. As the solution concentration was increased, the smooth fibers were formed. In addition, different solvent ratios determined the viscosity and the surface tension of solutions. As a result, with decreased viscosity and increased surface tension, thin fibers were obtained by electrospinning. Furthermore the aligned nanofiber was successfully created by using drum collector.

A Novel Viscosity Measurement Technique Using a Falling Ball Viscometer with a High-speed Camera

  • Jo, Won-Jin;Pak, Bock-Choon;Lee, Dong-Hwan
    • KSTLE International Journal
    • /
    • v.8 no.1
    • /
    • pp.16-20
    • /
    • 2007
  • This study introduces a new approach to a falling ball viscometer by using a high speed motion camera to measure the viscosity of both Newtonian and non-Newtonian fluids from the velocity-time data. This method involves capturing continuous photographs of the entire falling motion of the ball as the ball accelerates from the rest to the terminal velocity state. The velocity of a falling ball was determined from the distance traversed by the ball by examining video tape frame by frame using the marked graduations on the surface of the cylinder. Each frame was pre-set at 0.01. Glycerin 74% was used for Newtonian solution, while aqueous solutions of Polyacrylamide and Carboxymethyl Cellulose were for non-Newtonian solutions. The experimental viscosity data were in good agreements with the results obtained from a rotating Brookfield viscometer.

Characteristics of Cladding Process with High Viscosity Mixing Powder Using $CO_2$ Laser ($CO_2$ 레이저를 이용한 고점성 혼합분말의 클래딩 가공 특성)

  • 이영곤;전병철;오동수;서병권;김재도
    • Proceedings of the KWS Conference
    • /
    • 2000.10a
    • /
    • pp.256-259
    • /
    • 2000
  • High viscosity mixing powder is a very useful material for laser cladding. This material has a high viscosity so that it can be sticked to substrate. Therefore, Laser cladding can be performed on a curved or slope surface. Laser cladding can be easily performed with the material instead of wire that is difficult to be manufactured in some case. In this experiment, it was used a high viscosity mixing powder which consists of a high temperature flux and a bronze powder. And AC2B alloy material was used as a substrate. Flux prevents the clad layer from being oxidized and increases bonding property between substrate and cladding material. It makes possible to laser cladding at low level energy.

  • PDF

Synthesis and Characterization of Cu Nanofluid Prepared by Pulsed Wire Evaporation Method (전기선 폭발법을 이용하여 제조된 구리 나노유체의 특성평가)

  • Kim, Chang-Kyu;Lee, Gyoung-Ja;Rhee, Chang-Kyu
    • Journal of Powder Materials
    • /
    • v.17 no.4
    • /
    • pp.270-275
    • /
    • 2010
  • Ethylene glycol-based Cu nanofluids were prepared by pulsed wire evaporation (PWE) method. The structural properties of Cu nanoparticles were studied by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). The average diameter and Brunauer Emmett Teller (BET) surface area of Cu nanoparticles were about 100 nm and $7.46\;m^2/g$, respectively. The thermal conductivity and viscosity of copper nanofluid were measured as functions of Cu concentration and temperature. As the volume fraction of Cu nanoparticles increased, both the enhanced ratios of thermal conductivity and viscosity of Cu nanofluids increased. As the temperature increased, the enhanced ratio of thermal conductivity increased, but that ratio of viscosity decreased.