Browse > Article
http://dx.doi.org/10.4150/KPMI.2010.17.4.270

Synthesis and Characterization of Cu Nanofluid Prepared by Pulsed Wire Evaporation Method  

Kim, Chang-Kyu (Nuclear Materials Research Division, Korea Atomic Energy Research Institute (KAERI))
Lee, Gyoung-Ja (Nuclear Materials Research Division, Korea Atomic Energy Research Institute (KAERI))
Rhee, Chang-Kyu (Nuclear Materials Research Division, Korea Atomic Energy Research Institute (KAERI))
Publication Information
Journal of Powder Materials / v.17, no.4, 2010 , pp. 270-275 More about this Journal
Abstract
Ethylene glycol-based Cu nanofluids were prepared by pulsed wire evaporation (PWE) method. The structural properties of Cu nanoparticles were studied by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). The average diameter and Brunauer Emmett Teller (BET) surface area of Cu nanoparticles were about 100 nm and $7.46\;m^2/g$, respectively. The thermal conductivity and viscosity of copper nanofluid were measured as functions of Cu concentration and temperature. As the volume fraction of Cu nanoparticles increased, both the enhanced ratios of thermal conductivity and viscosity of Cu nanofluids increased. As the temperature increased, the enhanced ratio of thermal conductivity increased, but that ratio of viscosity decreased.
Keywords
Nanofluid; Thermal conductivity; Viscosity; Copper; Pulsed wire evaporation;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 S. K. Das, N. Putra, P. Thiesen and W. Roetzel: J. Heat Transfer, 125 (2003) 567.   DOI   ScienceOn
2 S. P. Jang and S. U. S. Choi: Transaction of the ASME, 129 (2007) 617.
3 D. Wen and Y. Ding: J. Ther. Heat Trans., 18 (2004) 481.   DOI   ScienceOn
4 R. Prasher, P. Bhattacharya and P. E. Phlan: Phys. Rev. Lett., 94 (2005) 025901.   DOI   ScienceOn
5 K. Y. Kwak and C. G. Kim: Korea-Australia Rheo, J., 17 (2005) 35.
6 C. Zhang, H. Gu and M. Fujii: Exp. Ther. Flu. Sci., 31 (2007) 593.   DOI   ScienceOn
7 S. Lee, S. U. S. Choi, S. Li and J. A. Eastman: J. Heat Trans., 121 (1999) 280.   DOI
8 Y. Xuan and Q. Li: Int. J. Heat Fluid Flow, 21 (2000) 58.   DOI   ScienceOn
9 H. Masuda, A. Ebata, K. Teramae and N. Hishinuma: Netsu Bussei, 4 (1993) 227.
10 H. Xie, J. Wang, T. Xi and Y. Liu: Inter. J. Ther., 23 (2002) 571.   DOI
11 A. Eastman, S. U. S. Choi, S. Li, W. Yu and L. J. Thompson: App. Phy. Lett., 78 (2001) 718.   DOI   ScienceOn
12 T. H. Cho, S. D. Park, Y. S. Lee and I. H. Baek: Kor. Chem. Eng. Res., 42 (2005) 624.
13 N. Putra, W. Roetzel and S. K. Das: Heat and Mass Trans., 39 (2003) 775.   DOI   ScienceOn
14 G. H. Lee, J. H. Park, C. K. Rhee and W. W. Kim: J. Ind. Eng. Chem., 9 (2003) 71.
15 C. K. Kim, G. J. Lee and C. K. Rhee: Kor. J. Mater. Res., 19 (2009) 468.   DOI   ScienceOn
16 H. M. Lee, J. H. Park, S. M. Hong, Y. R. Uhm and C. K. Rhee: J. Kor. Powder. Metall. Inst., 16 (2009) 243.(Korean)   DOI   ScienceOn
17 R. L. Hamilton and O. K. Crosser: I & EC Fundamentals, 1 (1962) 187.   DOI
18 P. Keblinski, J. A. Eastman and D. G. Cahill: Materials Today, 8 (2005) 36.
19 J. C. Maxwell: second ed., Clarendon Press, Oxford, UK (1881).
20 S. P. Jang and S. U. S. Choi: App. Phys. Lett., 84 (2004) 4316.   DOI   ScienceOn
21 S. K. Das, S. U. S. Choi and H. E. Patel: Heat Transfer. Eng., 27 (2006) 3.
22 S. K. Das, N. Putra, P. Thisen and W. Roetzel: J. Heat Transfer, 125 (2003) 567.   DOI   ScienceOn