• Title/Summary/Keyword: Surface treatment system

Search Result 1,227, Processing Time 0.034 seconds

A Study on the Weight Loss Treatment and Characteristics of Nylon 6 Fiber (나일론 6 섬유의 감량가공 및 특성 연구)

  • Lim, Sung Chan;Lee, Hyun Woo;Lee, Hyun Jae;Won, Jong Sung;Jin, Da Young;Lee, Seung Goo
    • Textile Coloration and Finishing
    • /
    • v.27 no.3
    • /
    • pp.175-183
    • /
    • 2015
  • Weight loss treatment of a fiber leads an improvement of its handle and drape properties. Hydrolysis of a fiber is commonly known as a method to reduce its weight of 5-40%. Most of the studies on the weight loss treatment are mainly based on polyester fibers and there has been almost no study on the weight reduction of nylon fibers. In this study, however, in order to develop a use of nylon 6 fiber for the industrial applications such as toothbrush, underwear, carpet and more, weight loss treatment of a nylon 6 fiber was carried out. Under various treatment conditions, morphological analysis were done to observe the change in the structure of the surface and analysis. From the observation of formic acid treated nylon 6 fiber, there were many etched and deformed morphologies. Thermal and crystalline properties were analyzed to find the changes in the crystal structure caused by the weight loss treatment. There were little differences in the crystalline properties of nylon 6 fiber by formic acid treatment. Tensile strength of nylon 6 fiber decreases with acid concentration. The FITR peak intensity of the amide bond decreases with formic acid concentration.

Molecular Dynamics Study on Evaporation Process of Adherent Molecules on Surface by High Temperature Gas

  • Yang, Young-Joon;Osamu Kadosaka;Masahiko Shibahara;Masashi Katsuki;Kim, Si-Pom
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2104-2113
    • /
    • 2004
  • Surface degreasing method with premixed flame is proposed as the removal method of adherent impurities on materials. Effects of adherent molecular thickness and surface potential energy on evaporation rate of adherent molecules and molecular evaporation mechanism were investigated and discussed in the present study. Evaporation processes of adherent molecules on surface molecules were simulated by the molecular dynamics method to understand thermal phenomena on evaporation processes of adherent molecules by using high temperature gas like burnt gas. The calculation system was composed of a high temperature gas region, an adherent molecular region and a surface molecular region. Both the thickness of adherent molecules and potential parameters affceted the evaporation rate of adherent molecules and evaporation mechanism in molecular scale.

LAND FARMING OF WATER PLANT ALUM SLUDGE ON ACID MINERAL SOIL AFFECTED BY ACID WATER

  • Lee, Seung-Sin;Kim, Jae-Gon;Moon, Hi-Soo;Kang, Il-Mo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.182-186
    • /
    • 2001
  • An acid forest surface soil as a land farming medium was treated with a water plant alum sludge at 0 to 18%. Indian mustard was grown in the treated soil in a greenhouse for 5 weeks and watered with pH 4 tap water adjusted with a mixed acid (1HNO$_3$: 2H$_2$SO$_4$) during plant growth. Changes in soil property, leachate chemistry, plant growth, and plant uptake of elements by the sludge treatment were determined. The alum sludge treatment increased buffer capacity to acidity, hydraulic conductivity, water holding capacity, and phosphate adsorption of the soil and decreased bulk density and mobility of small particles. The sludge treatment reduced leaching of Al, Mg, K, Na, and root elongation. Plant did uptake less amount of the cations and P but more Ca with the sludge treatment.

  • PDF

Bond Properties of CFRP Rebar in Fiber Reinforced High Strength Concrete with Surface Treatment Methods of Reinforcing Fibers (보강섬유의 표면처리에 따른 섬유보강 고강도콘크리트와 CFRP 보강근의 부착특성)

  • Park, Chan-Gi;Won, Jong-Pil;Cha, Sang-Sun
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.275-282
    • /
    • 2009
  • The effects of surface treatment method of reinforcing fiber on the bonding strength between carbon fiber reinforced polymer rebar (CFRP rebar) and high strength concrete have been evaluated in this study. The structural PVA fiber is coated with a proprietary hydrophobicoiling agent and crimped type polyolefin based structural synthetic fiber is deformed with a geometrical modification were used for the reinforcing fiber. The compressive tests have been performed to evaluate the strength property of high strength concrete depending on the surface treatment method of fiber. The bonding property between the high strength concrete and the CFRP rebar was evaluated by means of direct bonding test. The test results indicated that the surface treatment method of fiber effect on the bonding behavior of high strength concrete and CFRP rebar. Also, as the development and propagation of splitting cracks were controled by adding fibers into the high strength concrete, the bonding behavior, bond strength and relative bonding strength of CFRP rebar and high strength concrete were significantly improved.

Plasma-Surface-Treatment of Nylon 6 Fiber for the Improvement of Water-Repellency by Low Pressure RF Plasma Discharge Processing (나일론 6 섬유의 발수성 향상을 위한 RF 플라스마 표면처리)

  • Ji, Young-Yeon;Jeong, Tak;Kim, Sang-Sik
    • Polymer(Korea)
    • /
    • v.31 no.1
    • /
    • pp.31-36
    • /
    • 2007
  • It has been reported that the surface properties of the plasma treated material were changed while maintaining its bulk properties. In this study, surface modification of nylon fiber by plasma treatment was tried to attain high water-repellency Nylon fiber was treated with RF plasma under a vacuum system using various parameters such as gas specious, processing time and processing power. Morphological changes by low pressure plasma treatment were observed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Moreover, the mechanical and inherent properties were analyzed by tensile strength, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The high water-repellency property of nylon fiber was evaluated by a water-drop standard test under various conditions in terms of aging effect. The results showed that the water-repellency of plasma-surface-treated nylon fiber was greatly improved compared to untreated nylon fiber.

Technology Trends in Stainless Steel for Water Splitting Application (스테인레스 강의 수전해 전극 응용기술 동향)

  • Kim, Moonsu;Ha, Jaeyun;Kim, Yong-Tae;Choi, Jinsub
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.2
    • /
    • pp.13-27
    • /
    • 2021
  • Stainless steel, which includes Ni and Cr with Fe balance, is most often applied for a wide range of applications such as structure and equipment material. It is not only suitable for use in these applications due to its good corrosion resistance, but also can be applied to catalyst, supporting material, and current collector due to intrinsic properties of Ni and Fe contained in stainless steel. Therefore, in recent years, a lots of surface treatment methods have been studied to activate stainless steel, developing application of water splitting system. In this review paper, the research on the surface treatment technology of stainless steel for water splitting is summarized. It is expected to be able to propose the diverse surface treatment approaches of stainless steel for application to low-cost and highly efficient water splitting electrode.

NO3-N Removal of A Reed Wetland Cell Constructed for Purifying Effluent from A Night Soil Treatment Plant During Its Initial Operating Stage (분뇨처리장 방류수정화 갈대습지셀의 초기운영단계 질산성질소 제거)

  • Yang, Hongmo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.5
    • /
    • pp.100-106
    • /
    • 2004
  • $NO^3$-N removal was examined from July 2002 to December 2002 of a surface-flow constructed treatment wetland cell, which was a part of a treatment wetland system composed of four wetland cells and one distribution pond. The system was established on rice paddy near the Kohung Estuarine Lake located at the southern part of the Korean Peninsula. The lake and the paddy were formed by a salt marsh reclamation project. Effluent from a secondary-level treatment plant was funneled into the system. The investigated cell was created in June 2002. Its dimensions were 87 m in length and 14 m in width. It had an open water zone at its center, which was equivalent to 10 percent of its total area. Reeds(Phragmites australis) were transplanted from natural wetlands into the cell and their stems were cut at about 40 cm height from their bottom ends. Average 25 $m^3$/day of effluent from the plant was funneled into the cell by gravity flow and average 24.2$m^3$/day of its treated effluent was discharged into the Sinyang Stream flowing into the lake. Its water depth was maintained about 0.2 m and its hydraulic detention time averaged 5.2 days. The average height of the reed stems was 45.2 cm in July 2002 and 80.5 cm in September 2002. The number of stems averaged 40.3 stems/$m^2$ in July 2002 and 74.5 stems/$m^2$ in September 2002. The reeds were established initially well. $NO_3$-N loading rate of influent and effluent averaged 173.7 and $93.5mg/m2{\cdot}day$, respectively. Removal of $NO_3$-N averaged $80.2mg/m2{\cdot}day$ and its removal rate by mass was about 50 %. Considering the initial operation of the cell and the inclusion of the cold months of November and December in the analysis period, the $NO_3$-N removal rate was good.

Performance Evaluation of Lab-scale High Rate Coagulation System for CSOs Treatment (강우유출수의 신속한 처리를 위한 고속응집시스템의 성능 평가 -실험실 규모 장치를 중심으로-)

  • Gwon, Eun-Mi;Oh, Seok-Jin;Cho, Seong-Ju;Lee, Seng-Chul;Ha, Sung-Ryong;Lim, Chea-Hoan;Park, Ji-Hoon;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.5
    • /
    • pp.629-639
    • /
    • 2010
  • To evaluate the performance of high rate coagulation system(HRCS) for CSOs treatment, fundamental function of lab scale HRCS has been tested by using the Jar tester and lab scale HRCS. The optimum pH dose by Streaming Current value was found in the range of 5.3~6.0 in Fe(III), and in the range of 5.8~6.6 in Al(III) and the optimum chemical dose were 0.44mM of $Al_2(SO_4)_3$ and 0.93mM of $FeCl_3$. The removal efficiencies at optimum $Al_2(SO_4)_3$ dose were 75%($TCOD_{Cr}$), 97%(TP), 95%(SS) and 96%(turbidity), respectively. And the removal efficiency of particles with less than $5{\mu}m$ of diameter was 70% and that of particles with higher than $5{\mu}m$ of diameter was 90%. The optimum alum dose in lab scale HRCS was 150mg/L, and the treatment efficiency was the best with addition of 1.0mg/L polymer. The effect of Micro sand addition was not clear, because the depth of the sediment tank in lab scale HRCS was not long enough. But the HRT of this lab scale HRCS was able to be shorten less then 7 minutes by adding the micro sand. The surface loading rates with respect to using different chemicals were 0.43m/h with alum only, 5.78m/h with alum and polymer and 6.22m/h with alum, polymer and micro sand. As a result, HRCS using coagulant, polymer and micro sand developed in this study was evaluated to be very effective for CSOs treatment.

Effect of Surface Treatment on Hydrogen Production of Cadmium Sulfide Particulate Film Electrodes (수소제조용 CdS 입자막 전극의 표면처리 효과)

  • Jang, Jum-Suk;Chang, Hye-Young;So, Won-Wook;Rhee, Young-Woo;Moon, Sang-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.11 no.3
    • /
    • pp.119-125
    • /
    • 2000
  • To improve the photochemical energy conversion efficiency and the stability of CdS particulate film electrode which is used to produce hydrogen from the aqueous $H_2S$ solution photoelectrochemically, surface treatment of this film was carried out using $TiCl_4$ solution. CdS particles for preparation of the films were synthesized by precipitation reaction of $Cd({NO_3})_2{\cdot}9H_2O$ and $Na_2S{\cdot}4H_2O$. Then, the CdS sol was hydrothermally treated for 12hr in an autoclave with the variation of treatment temperature to control the crystalline phase of particles. CdS film electrode was thus prepared by annealing at $400^{\circ}C$ for 12hr of the wet-film cast at room temperature, and subsequently surface treated with $TiCl_4$ solution. The electrodes were characterized using XRD, SEM, and the photocurrent meter. The photocurrents of Cds film electrodes prepared with surface treatment were up to two times higher than the electrodes without surface treatment, indicating about $4.0mA/cm^2$. Hydrogen production rate in a continuous flow system using photoelectrochemical or photochemical cells prepared with surface treatment also increased in proportion to the increase of photocurrents.

  • PDF

A Pilot-Scale Study of Multiple Stage of Constructed Wetland Treatment System and Modeling for Nutrient Removal (Pilot 규모 연속배열형 인공습지의 영양염류 제거효능 규명 및 평가모델 연구)

  • Choi, Seung Il;Iamchaturapatr, Janjit;Rhee, Jae Seong
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.781-788
    • /
    • 2010
  • A pilot study was performed to examine the feasibility of multiple stage of constructed wetland (CW) for nutrient removal. The system is composed of six wetland cells connected with water-ways. The hydraulic of wetland cells is designed as free water surface flow. The treatment capacity was $25m^3d^{-1}$ at HRT of about one day for each cell. The magnitude of nutrient removal was related with the length of wetlands and plant density. Total N and P removal rates were 1353 and $246mg\;m^{-2}d^{-1}$ respectively. The pilot-scale reactor was model as continuous flow system containing contribution of CSTR and PFR typed-reactors. The $k-C^*$ model equation was applied to predict N and P reduction. The result indicated the equation was well guided to estimate reduction of $NO_3-N$ and $PO_4-P$.