• Title/Summary/Keyword: Surface treatment$NO_x$

Search Result 114, Processing Time 0.02 seconds

Kinetics of Hydrogen Rich Ethanol as Reductant for HC-SCR over $Al_2O_3$ Supported Ag Catalyst (Ag/$Al_2O_3$ 촉매하의 HC-SCR에서 수소 풍부 에탄올의 반응 특성)

  • Lee, Ju-Heon;Park, Jeong-Whan;Kim, Seong-Soo;Yoo, Seung-Joon;Kim, Jin-Gul
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.6
    • /
    • pp.519-525
    • /
    • 2010
  • Ethanol was used as reductant to remove $NO_x$ over Ag/$Al_2O_3$ catalyst via SCR from stationary emission source. Among the tested hydrocarbon reductants, ethanol showed highest de-$NO_x$ performance over the Ag/$Al_2O_3$ catalyst. De-$NO_x$ efficiency of about 83% was obtained in the condition of GHSV 20,000 $hr^{-1}$, $NO_x$ 200 ppm, CO 200 ppm, $O_2$ 13%, $H_2O$ 5% and mole ratio of ethanol/$NO_x$ = 2 between temperature of $300^{\circ}C$ and $400^{\circ}C$. While $SO_2$ presence in the $NO_x$ exhaust suppressed the catalytic activity, catalyst with acid (0.7% $H_2SO_4$) treatment of catalyst showed higher catalytic activity, where In-Situ DRIFT showed S presence over catalyst surface was increased after acid treatment of catalyst. From in-situ DRIFT and SCR results, it was concluded that sulfur presence over the surface of Ag/$Al_2O_3$ catalyst was the dominant factor to control the de-$NO_x$ reaction yield via HC-SCR from the exhausted gas including $SO_2$.

Effect of SOx on HC-SCR Kinetics over Ag/Al2O3 Catalyst (SOx 함유 HC-SCR에서 산처리 Ag/Al2O3 촉매의 반응 특성)

  • Lee, Ju-Heon;Park, Jeong-Whan;Kim, Seong-Soo;Yoo, Seung-Joon;Kim, Jin-Gul
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.5
    • /
    • pp.714-720
    • /
    • 2011
  • Ethanol was used as reducing agent to remove $NO_x$ exhaust from the stationary source. Pre-treatment with sulfuric acid over $Ag/Al_2O_3$ catalyst was dedicated to overcome the $SO_2$ poisoning effect. The $NO_x$ reduction experiment was performed under the simulated condition of power plant The increased surface area with higher CPSI devoted to increase de-$NO_x$ yield. De-$NO_x$ yield of the $NO_x$ exhaust containing 20 ppm of $SO_2$ increased after acid treatment with 0.7% $H_2SO_4$ over 4.0% $Ag/Al_2O_3$, where the increased dispersion of Ag found from the results of XRD and XPS was the dominant factor for the increased de-$NO_x$ yield. However, the reason for the decreased de-$NO_x$ yield with the acid treatment of higher concentration (1.0% and 2.0%) of $H_2SO_4$ was found to be due to the formation of $Ag_2SO_4$ crystallites found from XRD result. Acid-treated $Ag/Al_2O_3$ catalyst showed maximum de-$NO_x$ yield at higher temperature than non-treated $Ag/Al_2O_3$ catalyst did.

The Effect of Surface Treatment on the Shear Bond Strength of Resin Cement to Zirconia Ceramics (표면처리가 지르코니아와 레진 시멘트의 전단결합강도에 미치는 효과)

  • Jung, Seung-Hyun;Kim, Kye-Soon;Lee, Jae-In;Lee, Jin-Han;Kim, Yu-Lee;Cho, Hye-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.2
    • /
    • pp.83-94
    • /
    • 2009
  • The aim of this study was to investigate the shear bond strength between zirconia ceramic and resin cement according to various surface treatments. The surface of each zirconia ceramic was subjected to one of the following treatments and then bonded Rely X Unicem or Rely X ARC resin cement; (1) Rocatec system and $50{\mu}m$ surface polishing, (2) No treatment and $50{\mu}m$ surface polishing, (3) Rocatec system and $1{\mu}m$ surface polishing, (4) No treatment and $1{\mu}m$ surface polishing. Each of eight bonding group was tested in shear bond strengths by universal testing machine(Z020, Zwick, Ulm, Germany) with crosshead speed of 1mm/min. The results were as follows; 1. Rocatec treatment groups showed greater bonding strengths than No Rocatec groups. There was significant difference of among groups(P<0.001) 2. For Rocatec groups, $50{\mu}m$ surface roughness groups showed greater bonding strengths than $1{\mu}m$ surface roughness groups.(P<0.001) But for No Rocatec groups, There was no significant difference of among groups(P>0.05) 3. Rely X Unicem groups showed greater bonding strengths than Rely X ARC groups. There was significant difference of among groups(P<0.01) Within the conditions of this study, Rocatec treatment was an effective way of increasing zirconia bonds to a resin cement, even in the case of self-adhesive resin cement.

Efficiency of catalyst-coated ceramic filter with acid treatment (촉매담지 세라믹 필터의 표면 산처리 효과)

  • Cho, Eul-Hoon;Suh, Kwang-Suck;Kim, Su-Hyo;Shin, Min-Chul;Shin, Byeong-Kil;Kim, Jin-Seong;Lee, Hee-Soo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.2
    • /
    • pp.91-95
    • /
    • 2008
  • Ceramic filter was prepared using cordierite powder and it was coated with $V_2O_5$ catalyst by vacuum impregnation method. The filter had the apparent porosity of 58 %, the compressive strength of 10 MPa and the pressure drop of 1200 Pa at the face velocity of 5 cm/see and 400$^{\circ}C$. $NO_x$ removal efficiency of only $V_2O_5$ coated on cordierite filter showed the removal efficiency of 80 %, and it was improved up to 90 % by increasing specific surface area of filter elements from the acid treatment. The high surface area is due to the removal of Mg and Al ions from the silicate structure and subsequent generation of free amorphous silicate on the surface of the cordierite.

The Effect of Surface Treatment on the Shear Bond Strength of Zirconia Ceramics to Resin Cemen (표면처리방법이 지르코니아와 레진시멘트 간의 전단결합강도에 미치는 영향)

  • Kim, Kyung Soo;Kim, Jeong-Mi;Kim, Yu-Lee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.1
    • /
    • pp.69-79
    • /
    • 2013
  • The aim of this study was to evaluate the effect of surface conditioning on the shear bond strength of zirconium-oxide ceramic to resin cement. A total of 120 disk-shaped zirconium-oxide ceramic blocks(3-TZP, Kyoritsu, Tokyo, Japan) were treated as follows: (1) no treatment; (2) sandblasting with 110 ${\mu}m$ aluminum-oxide(Al2O3); (3) particles tribochemical silica coating(RocatecTM, 3M ESPE). Then zirconium-oxide ceramic blocks were divided into six groups(10 for each group) and bonded with resin cement(Rely X U-200, 3M ESPE). (1) No treatment / No treatment (2) No treatment / Sandblasting with 110 ${\mu}m$ aluminum-oxide particles (3) No treatment / Silica coating (4) Sandblasting with 110 ${\mu}m$ aluminum-oxide particles / Sandblasting with 110 ${\mu}m$ aluminum-oxide particles (5) Sandblasting with 110 ${\mu}m$ aluminum-oxide particles / Silica coating (6) Silica coating / Silica coating. Each group was tested in shear bond strengths by UTM. Data analysis included one-way analysis of variance(ANOVA) and the Tukey Honestly Significant Difference test (P=0.05). Group that bonded two silica coated specimen showed a highest bond strength(P<0.05). Two silica coated surface conditioning group and air-abrasion and silica coated surface conditioning group showed significantly difference with other groups(P<0.05). Other groups had no significantly difference each other. Within the limitation of this study, Surface conditioning with Rocatec treatment to each side of specimen provided the highest bond strength.

Optimization of ultrasonification of slaughter blood for protein solubilization

  • Jeon, Yong-Woo
    • Environmental Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.163-169
    • /
    • 2015
  • In this study, we attempted to solubilize protein in slaughter blood (SB) using ultrasonic technology. The application of ultrasonic technology can make enzymatic degradation of SB more effective, which has no comparable alternative for treatment. The SB was homogenized by grinding it for 10 minutes at 10,000 rpm as a pretreatment for preventing its clotting, and then ultrasonic treatment was attempted to solubilize protein in SB. To maximize the efficiency of ultrasonic treatment for SB, the optimum condition of ultrasonic frequency (UF) was determined to be 20 kHz. To optimize the operation conditions of ultrasonification with 20 kHz of frequency, we used response surface methodology (RSM) based on ultrasonic density (UD) and ultrasonification time (UT). The solubilization rate (SR) of protein (%) was calculated to be $101.304-19.4205X_1+0.0398X_2+7.9411X_1{^2}+0.0001X_2{^2}+0.0455X_1X_2$. From the results of the RSM study, the optimum conditions of UD and UT were determined at 0.5 W/mL and 22 minutes, respectively, and SB treated under these conditions was estimated to have a 95% SR. Also, experimentally, a 95.53% SR was observed under same conditions, accurately reflecting the theoretical prediction of 95%.

EFFECT OF SURFACE TREATMENT METHODS ON THE SHEAR BOND STRENGTH OF RESIN CEMENT TO ZIRCONIA CERAMIC

  • Lee, Ho-Jeong;Ryu, Jae-Jun;Shin, Sang-Wan;Sub, Kyu-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.6
    • /
    • pp.743-752
    • /
    • 2007
  • Statement of problem. The aims of the study were to evaluate the effect of current surface conditioning methods on the bond strength of a resin composite luting cement bonded to ceramic surfaces and to identify the optimum cement type. Material and methods. The sixty zirconia ceramic specimens(10 per group) with EVEREST milling machine and 60 tooth block were made. The zirconia ceramic surface was divided into two groups according to surface treatment: (1) airborne abrasion with $110{\mu}m$ aluminum oxide particles; (2) Rocatec system, tribochemical silica coating. The zirconia ceramic specimens were cemented to tooth block using resin cements. The tested resin cements were Rely X ARC, Panavia F and Superbond C&B. Each specimen was mount in a jig of the universal testing machine for shear strength. The results were subjected to 2-way ANOVA and Post hoc tests was performed using Tukey, Scheffe, and Bonferroni test. Results. The mean value of shear bond strength(MPa) were as follows: $$RelyXARC(+Al_2O_3),5.35{\pm}1.69$$; $$RelyXARC(+Rocatec),8.50{\pm}2.13$$; $$PanaviaF(+Al_2O_3),9.58{\pm}1.13$$; $$PanaviaF(+Rocatec),12.98{\pm}1.71$$; $$SuperbondC&B(+Al_2O_3)8.27{\pm}2.04$$; $$SuperbondC&B(+Rocatec),14.46{\pm}2.39$$. There was a significant increase in the shear bond strength when the ceramic surface was subjected to the tribochemical treatment(Rocatec 3M) in all cement groups(P<0.05). Bonding strengths of cements applied to samples treated with $Al_2O_3$ were compared; Rely X ARC showed the lowest values, whereas Panavia F cement showed higher value than that of Superbond C&B group with no statistical significance. When the bond strength of cements with of Rocatec treatment was compared, Rely X ARC showed lowest values. Overall, it was apparent that tribochemical treated Super-Bond possessed higher mean bond strength (14.46MPa; P<0.05) than that of Panavia F cement group with no significance. Conclusions. Silica coating followed silanization(Rocatec treatment) increase the bond strength between resin cement and zirconia ceramic. Panavia F containing phosphate monomer and Superbond C&B comprised of 4-META tend to bond chemically with zirconia ceramic, thus demonstrating higher bond strength compared to BisGMA resin cement. Superbond C&B has shown to have highest value of bonding strength to zirconia ceramic after Rocatec treatment compared to other cement.

A Study on Numerical Modeling of the Induced Heat to Gaseous Flow inside the Mixing Area of Ammonia SCR System in Diesel Nox After-treatment Devices (디젤 NOx 후처리 장치에 있어서 암모니아 SCR 시스템 혼합영역 내 가스유동의 유입열 수치모델링에 관한 연구)

  • Bae, Myung-Whan;Syaiful, Syaiful
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.11
    • /
    • pp.897-905
    • /
    • 2008
  • Selective catalytic reduction(SCR) is known as one of promising methods for reducing $NO_x$ emissions in diesel exhaust gases. $NO_x$ emissions react with ammonia in the catalyst surface of SCR system at working temperature of catalyst. In this study, to raise the reacting temperature when the exhaust gas temperature is too low, a heater is located at the bottom of SCR reactor. At an ambient temperature, ammonia is radially injected perpendicular to the exhaust gas flow at inlet pipe and uniformly mixed in the mixing area after being impinged against the wall. To predict the turbulent model inside the mixing area of SCR system, the standard ${\kappa}\;-\;{\varepsilon}$ model is applied. This work investigates numerically the effects of induced heat on the gaseous flow. The results show that the Taylor-$G{\ddot{o}}rtler$ type vortex is generated after the gaseous flow impinges the wall in which these vortices influence the temperature distribution. The addition of heat disturbs the flow structure in bottom area and then stretching flow occurs. Vorticity strand is also formed when heat is continuously increased. Constriction process takes place, however, when a further heat input over a critical temperature is increased and finally forms shed vortex which is disconnected from the vorticity strand. The strong vortex restricts the heat transport in the gaseous flow.

The influence of surface conditioning on the shear bond strength of self-adhesive resin cement to zirconia ceramics (표면처리방법이 지르코니아와 수종의 시멘트의 전단결합강도에 미치는 영향)

  • Jung, Ji-Hye;Jung, Seung-Hyun;Cho, Hye-Won;Kim, Yu-Lee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.4
    • /
    • pp.251-258
    • /
    • 2010
  • Purpose: To evaluate the effect of surface conditioning on the shear bond strength of zirconium-oxide ceramic to 4 luting agents. Materials and methods: A total of 120 diskshaped zirconium-oxide ceramic blocks (3Y-TZP, Kyoritsu, Japan) were treated as follows: (1) Sandblasting with $110\;{\mu}m$ aluminum-oxide ($Al_2O_3$) particles; (2) tribochemical silica coating (Rocatec) using $110\;{\mu}m$ $Al_2O_3$ particles modified by silica; (3) no treatment. Then zirconium-oxide ceramic blocks bonded with 4 luting cements (RelyX luting (3M ESPE), Maxcem (Kerr), Nexus3 (Kerr), Rely X Unicem (3M ESPE)). Each group was tested in shear bond strengths by UTM. A 1-way analysis of variance and 2-way analysis of variance was used to analyze the data ($\alpha$ = .05). Results: RelyX unicem in combination tribochemical silica-coating produced a highest bond strength (P < .05). Air abrasion group and Rocatec treatment groups resulted in significantly higher than no conditioning group (P < .05). RelyX Luting groups showed lower bond strength than other groups. There were significant differences among groups (P < .05). Conclusion: Within the limitation of this study, RelyX Unicem cement provided the highest bond strength and Rocatec treatment enhanced the bond strength.

ON THE BONE TISSUE REACTION TO IMPLANTS WITH DIFFERENT SURFACE TREATMENT METHODS (임플랜트 표면 처리 방법에 따른 골조직 반응에 대한 연구)

  • Kim, Yong-Jae;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.1
    • /
    • pp.71-84
    • /
    • 2007
  • Statement of problem: Implant surface characteristics plays an important role in clinical success and many studies have been made for improvement of success by changing surface roughness. Purpose: Appropriate increase of surface roughness increases the activity of osteoblast and enhance contact and retention between bone and implant. Material and method- Machined, SLA and RBM surface implants, which are the most commonly used implants were implanted into the tibia of rabbits and after 1 week, 4 weeks, 8 weeks and 12 weeks there were histologic and histomorphometric analysis and study for bone gradient and change of Ca/P ratio using EDS(Energy Dispersive X-ray Spectroscope). Results: Comparison of bone-implant contact showed no significant difference among each implant. In comparison of bone area rates, SLA showed higher value with significant difference at 1 week and 4 weeks, and SLA and RBM at 8 weeks than Machined implant (p<0.05). In analysis of bone constituents with EDS, titanium was specifically detected in new bones and the rates were constant by surface treatment method or period. In case of Ca/P ratio, according to surface treatment method, each group showed significant difference. Lots of old bone fragments produced during implantation remained on the rough surface of RBM implant surface and each group showed histological finding with active synthesis of collagen fibers until 12 weeks. In transmission electronic microscopic examination of sample slice after elapse of twelve weeks, tens nm of borderline (lamina limitans like dense line)was seen to contact the bone, on the interface between bone and implant. Conclusion: SLA and RBM implant with rough surface shows better histomorphometrical result and the trend of prolonged bone formation and maturation in comparison with Machined implant. In addition, implant with rough surface seems to be helpful in early stage bone formation due to remaining of old bone fragments produced in implantation. From the results above, it is considered to be better to use implant with rough surface in implantation.