• Title/Summary/Keyword: Surface shape modification

Search Result 121, Processing Time 0.022 seconds

Experimental investigation on optimal shear strengthening of RC beams using NSM GFRP bars

  • Ramezanpour, M.;Morshed, R.;Eslami, A.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.1
    • /
    • pp.45-52
    • /
    • 2018
  • Several techniques have been developed for shear strengthening of reinforced concrete (RC) members by using fiber reinforced polymer (FRP) composites. However, debonding of FRP retrofits from concrete substrate still deemed as a challenging concern in their application which needs to be scrutinized in details. As a result, this paper reports on the results of an experimental investigation on shear strengthening of RC beams using near surface mounted (NSM) FRP reinforcing bars. The main objective of the experimentation was increasing the efficiency of shear retrofits by precluding/postponing the premature debonding failure. The experimental program was comprised of six shear deficient RC beams. The test parameters include the FRP rebar spacing, inclination angle, and groove shape. Also, an innovative modification was introduced to the conventional NSM technique and its efficiency was evaluated by experimental observation and measurement. The results testified the efficiency of glass FRP (GFRP) rebars in increasing the shear strength of the test specimens retrofitted using conventional NSM technique. However, debonding of FRP bars impeded exploiting all retrofitting advantages and induced a premature shear failure. On the contrary, application of the proposed modified NSM (MNSM) technique was not only capable of preventing the premature debonding of FRP bars, but also could replace the failure mode of specimen from the brittle shear to a ductile flexural failure which is more desirable.

The Effects of Golf Course Construction on the Geomorphic Characteristics of a Small Watershed (골프장 조성이 소유역의 지형적 특성에 미치는 영향 분석)

    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.2
    • /
    • pp.41-50
    • /
    • 1999
  • The purpose of this study is to find out the changes in geomorphic characteristics of a small watershed when a golf course is constructed. The research site is a set of seven small watersheds including an 18-hole golf course that were randomly selected. The size, shape, and drainage network of watersheds were measured by using planimeter, watershed eccentricity, and stream order, respectively. In addition, a 25m$\times$25m mesh was used on topographic maps and grading plans in order to obtain the slope, elevation, and aspect of the watersheds. The major results of this research, while investigating of the changes in geomorphic characteristics of watersheds when a golf course is constructed, are as follows: 1. The size of watersheds is increased in accordance to the difference in elevation between the golf course site and the small watershed. 2. The watershed eccentricities are in general similar except for a few low-valued cases. 3. The changes in the average altitude and the gradient are more drastic with their bigger original values. 4. The aspects are changed more with decreasing elevation. 5. The stream order decreases in the case of a low watershed eccentricity. 6. The surface modification has a closer relationship to the slope rather than the size of effective use area. 7. With a steeper gradient and an excessively low gradient, the height of cutting/filling is increased.

  • PDF

Preparation and Characterization of Lubricating Oil-based Nanofluids Containing Carbon Nanoparticles (탄소 나노소재를 이용한 윤활유 기반 나노유체의 제조 및 평가)

  • Choi, Cheol;Jung, Mi-Hee;Oh, Jae-Myung
    • Korean Journal of Materials Research
    • /
    • v.19 no.3
    • /
    • pp.156-162
    • /
    • 2009
  • Lubricant-based nanofluids were prepared by dispersing carbon nanoparticles in gear oil. In this study, the effects of the particle size, shape and dispersity of the particles on the tribological properties of nanofluids were investigated. Dispersion experiments were conducted with a high-speed bead mill and an ultrasonic homogenizer, and the surfaces of the nanoparticles were simultaneously modified with several dispersants. The effective thermal conductivity of the nanofluids was measured by the transient hot-wire method, and the tribological behaviors of the nanofluids were also investigated with a disk-on-disk tribo-tester. The results of this study clearly showed that the combination of the nanoparticles, the deagglomeration process, the dispersant and the dispersion solvent is very important for the dispersity and tribological properties of nanofluids. Lubricant-based nanofluids showed relatively low thermal conductivity enhancement, but they were highly effective in decreasing the frictional heat that was generated. For nanofluids containing 0.1vol.% graphite particles in an oil lubricant, The friction coefficient in the boundary and fluid lubrication range was reduced to approximately 70% of the original value of pure lubricant.

Estimation of Contact Fatigue Life of a Girth Gear Based on Pinwheel (핀 휠 기반 거스 기어의 접촉 피로수명 평가)

  • Kwon, Soon-man;Shin, Heung Chul
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.4
    • /
    • pp.245-252
    • /
    • 2016
  • Girth gears are applied in the mining, cement, and mineral processing industries and used in various types of horizontal mills, rotary dryers and kilns, and other heavy-gear ring applications. The large ring gears are normally fitted outside mills or kilns to provide the primary rotational drive. Recently, an external pinwheel gear set (e-PGS) was introduced to overcome manufacturing problems associated with girth gears. e-PGS is also suitable for low-speed, heavy-duty mechanical transmission and dusty and poor-lubrication conditions. This paper first presents a new profile modification of root relief for the e-PGS cam pinion. We then investigate load-stress factors to estimate the surface fatigue life by varying the shape design parameters. The results show that the contact fatigue life of an e-PGS can be extended significantly by increasing the profile shift coefficient. However, support bearing life of the pinwheel depends more on the contact force distribution than the profile shift coefficient.

An Improved Mesh-free Crack Analysis Technique Using a Singular Basis Function (특이기저함수를 이용하여 개선한 Mesh-free 균열해석기법)

  • 이상호;윤영철
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.3
    • /
    • pp.381-390
    • /
    • 2001
  • In this paper, a new improved crack analysis technique by Element-Free Galerkin(EFG) method is proposed, in which the singularity and the discontinuity of the crack successfully described by adding enrichment terms containing a singular basis function to the standard EFG approximation and a discontinuity function implemented in constructing the shape function across the crack surface. The standard EFG method requires considerable addition of nodes or modification of the model. In addition, the proposed method significantly decreases the size of system of equation compared to the previous enriched EFG method by using localized enrichment region near the crack tip. Numerical example show the improvement and th effectiveness of the previous method.

  • PDF

A Literature Review on Nano-Modified Implant Surfaces (나노구조 표면에 관한 문헌고찰)

  • Park, Go-Woon;Cha, Min-Sang;Kim, Dae-Gon;Park, Chan-Jin;Cho, Lee-Ra
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.2
    • /
    • pp.141-151
    • /
    • 2013
  • The nano-surface modification techniques could be classified; internal modifications which enhance surface roughness and porosity in nano level and external modifications as nano particle coating. Nano-modified implant surface has various morphograpies such as nanotube, nanopit, nanonodule and polymorphic structures. Creating surface depends upon preparation method and material, however, there is no standard preparation technique not yet. The nano-modified surfacet is electrochemically stable comparing with the surface modified in micron level. Nano-modified surface has little cytotoxicity, stimulates osteoblast proliferation and differentiation. Moreover, it decreases soft tissue intervention by interrupting the proliferation of fibroblast. Nanostructure has similar size and shape with cells and proteins, consequently leads to good biocompatibility and enhanced osseointegration. However, the actual effect in vivo is limited, due to the distance of effect. Even if nano-modified surface has antibiotic property due to photocatalysis, short duration time makes clinical application questionable. Further investigations should focus on the optimal nano-modified surface, which has many potentials.

Study for Optimal Hull Form Design of a High Speed Ro-Pax Ship on Wave-making Resistance Performance (고속 Ro-Pax선형의 조파저항성능 향상을 위한 최적 선형설계에 관한 연구)

  • Park, Dong-Woo;Choi, Hee-Jong
    • Journal of Navigation and Port Research
    • /
    • v.36 no.10
    • /
    • pp.787-793
    • /
    • 2012
  • A hull form design technique to enhance the wave-making resistance performance for a medium size high speed Ro-Pax ship was studied introducing an optimization method and an automatic hull form modification method. SQP(sequential quadratic programming) was applied as the optimization algorithm and the geometry of hull surface was represented and modified using the NURBS(Non-Uniform Rational B-Spline). The wave-making resistance performance as an objective function in the optimization procedure was evaluated using the Rankine source panel method in which nonlinearity of the free surface boundary conditions and the trim and sinkage of the ship was fully taken into account. Using the Ro-Pax ship as a base hull, the hull-form optimization method was applied to obtain the hull shape that produced the lower wave-making resistance. To verify the validity of the hull-form optimization method, the numerical results was compared with the model test results.

Comparative study of surface modification on bond strength of polyetherketoneketone adhesively bonded to resins for temporary restoration (Polyetherketoneketone의 표면처리 방법에 따른 임시 보철물 제작용 레진과의 결합 강도 비교 연구)

  • Hong, Mun Gi;Shin, Soo-Yeon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.1
    • /
    • pp.1-11
    • /
    • 2020
  • Purpose: The purpose was to compare shear bond strength (SBS) of three types of resin for temporary restoration to polyetherketoneketone (PEKK) depending on surface modification. Materials and Methods: Sixty disks made from PEKK were air-abraded with 110 ㎛ alumina particles (Cobra, Renfert GmbH, Hilzinge, Germany) and thirty specimens were divided into two groups each: PEKK without Visio.link (Bredent, Senden, Germany)(U) and with Visio.link (P). Resins for temporary restoration (polymethylmethacrylate; PMMA, polyethylmethacrylate; PEMA, bis-acryl composite resin) in the shape of a square with one side 3.2 mm were bonded to PEKK twenty respectively and classified into six groups (UM, UE, UC, PM, PE and PC). All specimens were stored in distilled water at 37℃ for 24 hours. SBS of each group was measured at a crosshead speed of 2 mm/min in universal testing machine. SBS was compared using one-way ANOVA and a Tukey HSD test (P = 0.05). Results: Group UM and group UE showed a significant difference in SBS with group UC (P < 0.05). Group PC showed a significant increase in SBS than group UC (P < 0.05). Conclusion: It is recommended to apply Visio.link to PEKK for adhering bis-acrylic composite resin, but not for PMMA and PEMA in clinical practice.

High temperature oxidation behavior and surface modification of Ni-based superalloys (니켈기 초합금의 고온산화거동과 표면개질에 관한 연구)

  • Seol, Gyeong-Won
    • Korean Journal of Materials Research
    • /
    • v.4 no.2
    • /
    • pp.166-176
    • /
    • 1994
  • Ni base superalloys are composed of solid sohltion hardening elements(Co, Cr. Mo. W and so on) and $\gamma '$ precipitation hardening elements(A1, Ti, Nb, Ta and so on). To Improve the mechanical properties and oxidation resistanre of superalloys, rare earth elements(%r, Hf, Y and so on) are added to the inner substrate, or are used as coating materials. Their pffects on the growth rate and adhes~on of oxide are changed according to the kinds of oxides such as $AI_2O_3$ and $Cr_2O_3$. The effect of yttrium on the oxidation rate, grain size of oxide, internal structure, and crack resistance was investigated for two kinds of Ni-base superalloys. One in AF'115 superalloy containing Hf and the other is MA6000 superalloy containing $Y_2O_3$. They werr owid~zed at high temperature after yttrium surface modification using ion coater. Yttrium coating on the AF115 and MA6000 superalloys results in a marked change in the growth of the inner oxide. For AF115 superalloy, the degree of gram boundary segregation of $Cr_2O_3$, and prefer en^ tial oxidation of Hf are decreased, and the shape of inner oxidation layer was changed from triangle to plate type. For MA6000 superalloy, $Cr_2O_3$ oxide scale was transformed as outer oxidation layer of CrZOI and inner oxidation layer of $Cr_2O_3$.

  • PDF

Dry Enteric Coating Process of Lactic Acid Bacteria by Hybridization System (Hybridization system을 이용한 유산균의 장용성 건식 피복)

  • Park, Dong-June;An, Eun-Young;Kim, Jae-Seung;Imm, Jee-Young;Han, Kyoung-Sik;Kim, Sae-Hun;Oh, Se-Jong
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.856-861
    • /
    • 2002
  • Surface-modified powders were produced by hybridization system using core freeze-dried lactic acid bacteria (Lactobacillus acidophilus ATCC 43121) and enteric coating materials. Scanning electron microscopy showed that the surface of freeze-dried lactic acid bacteria changed to smooth round shape during surface reforming process, although no significant physical damages affecting the activity of the lactic acid bacteria were observed based on viability and salt-tolerance tests. Signigicant difference was not found in acid tolerance test probably due to the inherent acid tolerance of L. acidophilus ATCC 43121. Significantly improved heat tolerance was obtained by surface modification process. Among the tested coating materials, Sureteric showed a higher surface- reforming ability than Eudragit S100 and L100-55. Core : coating ratio agent of 9 : 1 (w/w) with rotor speed of 15,000 rpm for 3 min were determined to be optimum conditions for the process.