• Title/Summary/Keyword: Surface segmentation

Search Result 224, Processing Time 0.022 seconds

Reliability of Change Patterns of Road Surface Temperature and Road Segmentation based on Road Surface Temperature (노면온도 변화 패턴의 신뢰성 검증 및 노면온도에 근거한 도로구간 분할 방법 연구)

  • Yang, Choong Heon;Yoon, Chun Joo;Kim, Jin Guk;Park, Jae Hong;Yun, Duk Geun
    • International Journal of Highway Engineering
    • /
    • v.18 no.4
    • /
    • pp.1-8
    • /
    • 2016
  • PURPOSES : This study evaluates the reliability of the patterns of changes in the road surface temperature during winter using a statistical technique. In addition, a flexible road segmentation method is developed based on the collected road surface temperature data. METHODS : To collect and analyze the data, a thermal mapping system that could be attached to a survey vehicle along with various other sensors was employed. We first selected the test route based on the date and the weather and topographical conditions, since these factors affect the patterns of changes in the road surface temperature. Each route was surveyed a total of 10 times on a round-trip basis at the same times (5 AM to 6 AM). A correlation analysis was performed to identify whether the weather conditions reported for the survey dates were consistent with the actual conditions. In addition, we developed a method for dividing the road into sections based on the consecutive changes in the road surface temperature for use in future applications. Specifically, in this method, the road surface temperature data collected using the thermal mapping system was compared continuously with the average values for the various road sections, and the road was divided into sections based on the temperature. RESULTS : The results showed that the comparison of the reported and actual weather conditions and the standard deviation in the observed road surface temperatures could produce a good indicator of the reliability of the patterns of the changes in the road surface temperature. CONCLUSIONS : This research shows how road surface temperature data can be evaluated using a statistical technique. It also confirms that roads should be segmented based on the changes in the temperature and not using a uniform segmentation method.

Segmentation and 3D Visualization of Medical Image : An Overview

  • Kang, Jiwoo;Kim, Doyoung;Lee, Sanghoon
    • Journal of International Society for Simulation Surgery
    • /
    • v.1 no.1
    • /
    • pp.27-31
    • /
    • 2014
  • In this paper, an overview of segmentation and 3D visualization methods are presented. Commonly, the two kinds of methods are used to visualize organs and vessels into 3D from medical images such as CT(A) and MRI - Direct Volume Rendering (DVR) and Iso-surface Rendering (IR). DVR can be applied directly to a volume. It directly penetrates through the volume while it determines which voxels are visualizedbased on a transfer function. On the other hand, IR requires a series of processes such as segmentation, polygonization and visualization. To extract a region of interest (ROI) from the medical volume image via the segmentation, some regions of an object and a background are required, which are typically obtained from the user. To visualize the extracted regions, the boundary points of the regions should be polygonized. In other words, the boundary surface composed of polygons such as a triangle and a rectangle should be required to visualize the regions into 3D because illumination effects, which makes the object shaded and seen in 3D, cannot be applied directly to the points.

Automatic Liver Segmentation on Abdominal Contrast-enhanced CT Images for the Pre-surgery Planning of Living Donor Liver Transplantation

  • Jang, Yujin;Hong, Helen;Chung, Jin Wook
    • Journal of International Society for Simulation Surgery
    • /
    • v.1 no.1
    • /
    • pp.37-40
    • /
    • 2014
  • Purpose For living donor liver transplantation, liver segmentation is difficult due to the variability of its shape across patients and similarity of the density of neighbor organs such as heart, stomach, kidney, and spleen. In this paper, we propose an automatic segmentation of the liver using multi-planar anatomy and deformable surface model in portal phase of abdominal contrast-enhanced CT images. Method Our method is composed of four main steps. First, the optimal liver volume is extracted by positional information of pelvis and rib and by separating lungs and heart from CT images. Second, anisotropic diffusing filtering and adaptive thresholding are used to segment the initial liver volume. Third, morphological opening and connected component labeling are applied to multiple planes for removing neighbor organs. Finally, deformable surface model and probability summation map are performed to refine a posterior liver surface and missing left robe in previous step. Results All experimental datasets were acquired on ten living donors using a SIEMENS CT system. Each image had a matrix size of $512{\times}512$ pixels with in-plane resolutions ranging from 0.54 to 0.70 mm. The slice spacing was 2.0 mm and the number of images per scan ranged from 136 to 229. For accuracy evaluation, the average symmetric surface distance (ASD) and the volume overlap error (VE) between automatic segmentation and manual segmentation by two radiologists are calculated. The ASD was $0.26{\pm}0.12mm$ for manual1 versus automatic and $0.24{\pm}0.09mm$ for manual2 versus automatic while that of inter-radiologists was $0.23{\pm}0.05mm$. The VE was $0.86{\pm}0.45%$ for manual1 versus automatic and $0.73{\pm}0.33%$ for manaual2 versus automatic while that of inter-radiologist was $0.76{\pm}0.21%$. Conclusion Our method can be used for the liver volumetry for the pre-surgery planning of living donor liver transplantation.

3D Human Face Segmentation using Curvature Estimation (Curvature Estimation을 이용한 3차원 사람얼굴 세그멘테이션)

  • Seongdong Kim;Seonga Chin;Moonwon Choo
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.6
    • /
    • pp.985-990
    • /
    • 2003
  • This paper presents the representation and its shape analysis of face by features based on surface curvature estimation and proposed rotation vector of the human face. Curvature-based surface features are well suited to use for experimenting the 3D human face segmentation. Human surfaces are exactly extracted and computed with parameters and rotated by using active surface mesh model. The estimated features were tested and segmented by reconstructing surfaces from the face surface and analytically computing Gaussian (K) and mean (H) curvatures without threshold.

  • PDF

Range Data Sementation and Classification Using Eigenvalues of Surface Function and Neural Network (면방정식의 고유치와 신경회로망을 이용한 거리영상의 분할과 분류)

  • 정인갑;현기호;이진재;하영호
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.7
    • /
    • pp.70-78
    • /
    • 1992
  • In this paper, an approach for 3-D object segmentation and classification, which is based on eigen-values of polynomial function as their surface features, using neural network is proposed. The range images of 3-D objects are classified into surface primitives which are homogeneous in their intrinsic eigenvalue properties. The misclassified regions due to noise effect are merged into correct regions satisfying homogeneous constraints of Hopfield neural network. The proposed method has advantage of processing both segmentation and classification simultaneously.

  • PDF

Airborne LiDAR Simulation Data Generation of Complex Polyhedral Buildings and Automatic Modeling (다양한 건물의 항공 라이다 시뮬레이션 데이터 생성과 자동 모델링)

  • Kim, Jung-Hyun;Jeon, Young-Jae;Lee, Dong-Cheon
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.235-238
    • /
    • 2010
  • Since the mid 1990s airborne LiDAR data have been widely used, automation of building modeling is getting a central issue. LiDAR data processing for building modeling is involved with extracting surface patch elements by segmentation and surface fitting with optimal mathematical functions. In this study, simulation LiDAR data were generated with complex polyhedral roofs of buildings and an automatic modeling approach was proposed.

  • PDF

Range Image Segmentation Based on Polynomial Function Approximation (다항식 함수 근사화에 근거한 거리 영상 분할)

  • 임영수;조택일;박규호
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.9
    • /
    • pp.1448-1455
    • /
    • 1990
  • In this paper, a range image segmentation method is proposed. This method consists of an initial segmentation stage by discontinuous edge detection and surface type labeling based on the sign of the principal curvatures. Initially type labeled image is oversegmented, this image is merged via stepwise optimal region merging stage based on polynomial function approxiamtion. The successful segmentation results are presented for two synthetic range images with noise and a real-world ERIM range image.

  • PDF

Segmentation of Measured Point Data for Reverse Engineering (역공학을 위한 측정점의 영역화)

  • 양민양;이응기
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.3
    • /
    • pp.173-179
    • /
    • 1999
  • In reverse engineering, when a shape containing multi-patched surfaces is digitized, the boundaries of these surfaces should be detected. The objective of this paper is to introduce a computationally efficient segmentation technique for extracting edges, ad partitioning the 3D measuring point data based on the location of the boundaries. The procedure begins with the identification of the edge points. An automatic edge-based approach is developed on the basis of local geometry. A parametric quadric surface approximation method is used to estimate the local surface curvature properties. the least-square approximation scheme minimizes the sum of the squares of the actual euclidean distance between the neighborhood data points and the parametric quadric surface. The surface curvatures and the principal directions are computed from the locally approximated surfaces. Edge points are identified as the curvature extremes, and zero-crossing, which are found from the estimated surface curvatures. After edge points are identified, edge-neighborhood chain-coding algorithm is used for forming boundary curves. The original point set is then broke down into subsets, which meet along the boundaries, by scan line algorithm. All point data are applied to each boundary loops to partition the points to different regions. Experimental results are presented to verify the developed method.

  • PDF

Image segmentation by fusing multiple images obtained under different illumination conditions (조명조건이 다른 다수영상의 융합을 통한 영상의 분할기법)

  • Chun, Yoon-San;Hahn, Hern-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.1 no.2
    • /
    • pp.105-111
    • /
    • 1995
  • This paper proposes a segmentation algorithm using gray-level discontinuity and surface reflectance ratio of input images obtained under different illumination conditions. Each image is divided by a certain number of subregions based on the thresholds. The thresholds are determined using the histogram of fusion image which is obtained by ANDing the multiple input images. The subregions of images are projected on the eigenspace where their bases are the major eigenvectors of image matrix. Points in the eigenspace are classified into two clusters. Images associated with the bigger cluster are fused by revised ANDing to form a combined edge image. Missing edges are detected using surface reflectance ration and chain code. The proposed algorithm obtains more accurate edge information and allows to more efficiently recognize the environment under various illumination conditions.

  • PDF

Morphological segmentation based on edge detection-II for automatic concrete crack measurement

  • Su, Tung-Ching;Yang, Ming-Der
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.727-739
    • /
    • 2018
  • Crack is the most common typical feature of concrete deterioration, so routine monitoring and health assessment become essential for identifying failures and to set up an appropriate rehabilitation strategy in order to extend the service life of concrete structures. At present, image segmentation algorithms have been applied to crack analysis based on inspection images of concrete structures. The results of crack segmentation offering crack information, including length, width, and area is helpful to assist inspectors in surface inspection of concrete structures. This study proposed an algorithm of image segmentation enhancement, named morphological segmentation based on edge detection-II (MSED-II), to concrete crack segmentation. Several concrete pavement and building surfaces were imaged as the study materials. In addition, morphological operations followed by cross-curvature evaluation (CCE), an image segmentation technique of linear patterns, were also tested to evaluate their performance in concrete crack segmentation. The result indicates that MSED-II compared to CCE can lead to better quality of concrete crack segmentation. The least area, length, and width measurement errors of the concrete cracks are 5.68%, 0.23%, and 0.00%, respectively, that proves MSED-II effective for automatic measurement of concrete cracks.