• Title/Summary/Keyword: Surface sediment

Search Result 900, Processing Time 0.022 seconds

Performance Evaluation of Backwash Hydrodynamic Separator Filter for Treatment of Micro Particles (역세척 Hydrodynamic Separator Filter를 이용한 미세입자 제거 특성 분석)

  • Lee, Jun-Ho;Bang, Ki-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.10
    • /
    • pp.694-701
    • /
    • 2012
  • The main purpose of this study is to evaluate of backwash system of hydrodynamic separator filter (HSF) with solar powered submerged pumps. It consists of a photovoltaic solar array, control electronics, battery, and two submersible pump powered by a 12 voltage DC motor. The laboratory scale study on treatable potential of micro particles using backwash HSF that was a combined with perlite filter cartridge and backwash nozzles. Since it was not easy to use actual storm water in the scaled-down hydraulic model investigations, it was necessary to reproduce ranges of particle sizes with synthetic materials. The synthesized storm runoff was made with water and addition of particles; ion exchange resin partices, silica gel particles, and commercial area manhole sediment particles. HSF was made of acryl resin with 250 mm of diameter filter chamber and overall height of 800 mm. Four case test were performed with different backwashing conditions and determined the SS removal efficiency with various surface loading rates. The operated range of surface loading rate was about 308~$1,250m^3/m^2/day$. It was found that SS removal efficiency of HSF using two submersible pumps improved by about 18% compared with HSF without backwash. Nonpoint control devices with solar water pumping systems would be useful for backwashing the filter in areas with not suppling electricity and reduce filter media exchange cost.

A Study on Chemical Compositions of Sediment and Surface Water in Nakdong River for Tracing Contaminants from Mining Activities (광해오염원 추적을 위한 낙동강 지역 퇴적물 및 하천수의 화학조성 연구)

  • Kim, Jiyun;Choi, Uikyu;Baek, Seung-Han;Choi, Hye-Bin;Lee, Jeonghoon
    • Journal of the Korean earth science society
    • /
    • v.37 no.4
    • /
    • pp.211-217
    • /
    • 2016
  • There have been found mine tailings, wastes, and mining drainage scattered in the area of Nakdong River due to the improper maintenance of the abandoned mines. These contaminants can flow into rivers during the heavy rain periods in summer. Along the study area beginning Seokpo-myeon, Bonghwa-gun of Gyeongsangbuk-do untill Dosan-myeon, Andong-si, there are one hundred five mines including sixty metalliferous mines and forty-five nonmetal mines, which can adversely affect the adjacent rivers. To verify the contamination, we collected sediments, seepage water and surface water for a year both in rainy season and dry season. This study found that sediments, containing high concentrations of heavy metals caused by mining activities, are dispersed throughout the entire river basin (68 sample points with pollution index, based on the concentration of trace element, (PI) >10 among the total of 101 samples). The results of river water analysis indicated the increased concentrations of arsenic and cadmium at branches from Seungbu, Sambo, Okbang and Janggun mine, which concerns that the river water may be contaminated by mining drainage and tailing sediments. However, it is difficult to sort out the exact sources of contamination in sediments and waters only by using the chemical compositions. Thus the control of mining pollution is challenging. To prevent water from being contaminated by mining activities, we should be able to divide inflow rates from each origin of the mines. Therefore, there should be a continued study about how to trace the source of contaminants from mining activities by analyzing stable isotopes.

Comparison of Pollutant Removal Efficiency in Road Sediment with Media Using Filter Separator (필터 분리기를 이용한 여재별 도로퇴적물의 오염물질 제거효율 비교)

  • Bang, Ki-Woong;Lee, Jun-Ho;Choi, Chang-Su;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.3
    • /
    • pp.332-340
    • /
    • 2007
  • Storm runoff from road contains significant loads of particulate and dissolved solids, organic constituents and metal elements. Micro particle is important when considering pollution mitigation because pollutant metal and organics have similar behavior with particles. The objective of this research is to evaluate the hydrodynamic filter separator performance for road storm runoff treatment. A various types of media such as perlite, granular activated carbon, zeolite were used for column test packing media and filter separator, and to determine the removal efficiency with various surface loading rate. As the results of column test, the highest SS removal efficiency was using mixed media(granular activated carbon, zeolite and perlite), and granular activated carbon mixed with zeolite has higher heavy metal removal efficiency than perlite. In laboratory scale hydrodynamic filter separator study, the operation ranges of surface loading rates were from 192 to 1,469 $m^3/m^2/day$. The estimated overall removal efficiencies of hydrodynamic filter separator for typical storm runoff were SS 48.1%, BOD 31.9%, COD 32.6%, TN 15.5%, and TP 17.3%, respectively. For the case of heavy metals, overall removal efficiencies were Fe 26.0%, Cu 19.4%, Cr 25.7, Zn 16.6%, and Pb 15.0%, respectively. The most appropriate medium for hydrodynamic filter separator was perlite mixed with granular activated carbon to treatment of road storm runoff.

Spatio-temporal Distribution of Organic Matters in Surface Sediments and Its Origin in Deukryang Bay, Korea (득량만 표층퇴적물 중 유기물의 시.공간적 분포 및 기원)

  • 윤양호
    • Journal of Environmental Science International
    • /
    • v.12 no.7
    • /
    • pp.735-744
    • /
    • 2003
  • The field observations on a seasonal characteristic of organic matter and its origin in the surface sediment were carried out at 35 stations in Deukryang bay, southern coast of Korean Peninsula from May 1995 to February 1996. The analytical parameters were mud temperature, ignition loss(IL), chemical oxygen demand(COD), pheopigment, sulfide and water content. The origin and seasonal dynamics of organic matter in Deukryang Bay were analyzed by COD/IL, COD/sulfide ratio and principal component analysis(PCA). As a results of the mud temperature fluctuated between 2.1$^{\circ}C$ with the lowest mean 4.6$^{\circ}C$ in winter and 27.6$^{\circ}C$ with the highest mean 25.5$^{\circ}C$ in summer. The range of ignition loss(IL) was from 3.1% in autumn to 21.5% in winter. Chemical oxygen demand(COD) showed the highest mean value of 8.45 mg/g dry in spring within the range of 2.90∼18.21 mg/g dry, while it showed the lowest value of 4.33 mg/g dry in autumn within the range of 0.67∼10.37 mg/g dry. Pheopigments showed the highest mean value of 9.04 $\mu\textrm{g}$/g dry in autumn within the range of 1.36∼20.44 $\mu\textrm{g}$/g dry, while it did the lowest mean value of 2.20 $\mu\textrm{g}$/g dry in summer within the range of 0.33∼11.36 $\mu\textrm{g}$/g dry. The range of total sulfide (H$_2$S) was from no detect(ND) to 3.30 mg/g dry in spring. And water content showed the annual mean value of 43.6% within the range of 23.6∼54.9%. The source of organic matter by COD/IL and COD/sulfide ratio in Deukryang Bay had been producted by primary producer in sea water areas except the areas effected by small stream, domestic and animal wastes. And the analytical results of PCA was able to be divided into three different regions. The former was characterized by the shallow depth and authigenic organic matter from phytoplankton in northwest area and northeastern inner bay, the secondary was done by deeper depth and allochthonous one from lands in southeast area and eastern entrance of bay, and the latter was done by authigenic one from the farm of seaweeds such as, sea cabbage, sea mustard etc in western entrance of bay. But a study on the relationship between sulfide and COD concentration in the northeastern inner bay which was characterized by the water stagnation will to take much more studying including major constituents of organic matter in the future.

Distribution of Organic Carbon, Organic Nitrogen, and Heavy Metals in Lake Shihwa Sediments (시화호 퇴적물의 유기탄소, 유기질소 및 중금속 함량과 분포)

  • Kang, Jeong-Won;Hang, Dae-Byuk;Park, Yong-Ahn;Choi, Jung-Hoon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.4
    • /
    • pp.276-284
    • /
    • 2000
  • Distributions of organic carbon (Co$_{org}$), organic nitrogen (N$_{org}$), and heavy metals (Zn, Pb, Cr, Cu, Mn) were investigated in Lake Shihwa sediments. Surface and core samples were collected in April and September, 1997 and March, 1998 for the study. The results show that these components contents are variable with sampling timeand station. In surface sediments, both Co$_{org}$ and N$_{org}$ have similar distribution pattern in which their high contents found in stations located near the land, indicating that the streams and industrial wastes seem to act as point sources. The C$_{org}$ contents are linearly related with those of heavy metals. It appears, therefore, that the distribution of heavy metals may be partly controlled by a complex interplay of biogenic, terrestial, and anthropogenic factors. The C/N ratios from three stations are in the range of 3-32, with an average of 13.2. Vertical profiles of heavy metals in sediment cores are similar to those of C$_{org}$ and N$_{org}$. Copper content of sediments is enriched compared to that of reported value before dike construction, but Zn and Mn are not deposited considerably. Especially, Pb content show less variable. Currently, anthropogenic effects of industrial complex may not reached to drainage gate area where heavy metal contents are comparable with those adjacent to coastal sediments.

  • PDF

Temporal and Spatial Fluctuations of Coastal Water Quality and Effect of Small Tide Embankment in the Muan Peninsula of Korea (무안반도 연안수질의 시ㆍ공간적 변동과 소규모 방조제의 영향)

  • Lee Dae-In;Cho Hyeon-Seo;Lee Gyu-Hyung;Lee Moon-Ok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.4
    • /
    • pp.24-36
    • /
    • 2003
  • In this study, we estimated the seasonal fluctuations of water quality and effect of small tide embankment in coastal water around the Muan Peninsula, which is located in the northern part of Mokpo city, and layer farming ground is spread around there. Some physical and chemical factors were analyzed to characterize water quality from Jan. to Oct. in 1994. The results were as follows: Dissolved oxygen was slightly under saturation in the almost areas of July, and in some bottom layer at ebb tide of October. Distribution of COD showed high values that over 2㎎/L in October and flood tide of April by the discharge of freshwater and resuspension of benthic sediment, which exceeded water quality criteria II. Maximum values of dissolved inorganic nitrogen ware appeared in surface layer during the flood tide of October, while minimum of that showed in surface layer in April. Concentration of dissolved inorganic phosphorus was higher at July than the others, which ranged from 0.24 to 2.08㎍-at/L. Mostly mean values of N/P ratio were lower than 16, it mean that nitrogen is more limiting nutrient than phosphorus for the growth of phytoplankton. The values of eutrophication index were in the range of 0.07~0.81. However, very high values due to increase of COD were estimated near the tide embankment and southern part in relation to tidal current in October. Water quality around tide embankment was suddenly changed worse within a short period after opening the water gate during the rainfall.

  • PDF

Paleo-latitude of the Intertropical Convergence Zone in the Northeast Pacific during Late Cenozoic (신생대 후기 북동태평양 지역 적도수렴대의 위치변화)

  • Hyeong, Ki-Seong;Kim, Ki-Hyune;Chi, Sang-Bum;Yoo, Chan-Min
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.245-253
    • /
    • 2004
  • The Intertropical Convergence Zone (ITCZ), where the southeast and northeast trade winds converge, is the effective climatological barrier that separates the southern and northern hemispheres in dust budget. Asian and N. American dusts dominate in fhe Pacific north of the ITCZ, while Central and S. American dust prevails south of the ITCZ. In order to understand the nature of latitudinal and depth-related variations of mineral composition in terms of relative position to the ITCZ, deep-sea core sediments were collected from $9^{\circ}N$ to $17^{\circ}N$ at a $2^{\circ}N$ interval along the $131.5^{\circ}W$ meridian and analyzed for mineral composition. The amount of illite in surface sediments decreases gradually from 65% at $17^{\circ}N\;to\;31^{\circ}N$ to 31% at 9f. In contrast, smectite increases from 11% to 56% southward. The observed mineralogical variation toward the ITCZ is attributed to the increased supply of volcaniclastic material transported via the southeast trade winds from the Central and South America source regions. Smectite-illite transition, a phenomenon that the amount of smectite increases over illite, occurs at around $10^{\circ}N$, the northern margin of the ITCZ. This result indicates that the change in latitudinal position of the ITCZ in geologic past could be recorded as a form of smectite-illite transition in deep-sea cores. The studied cores show down-core variation of mineral composition from illite-rich at the surface to smectite-rich clay suit at depths, similar to the latitudinal variation. The smectite-illite transitions observed in these cores are likely the records of changes in latitudinal position of the ITCZ. The depth and age of smectite-illite transition is getting shallower and younger toward equator, implying that the ITCZ was located farther north during late Tertiary and has shifted southward to the present position of $5^{\circ}N-10^{\circ}N$.

Initial Risk Assessment of Acetanilide with Respect to Ecological Integrity (아세트아닐리드의 초기 환경위해성 평가)

  • Lee, Su-Rae;Park, Seon-Ju;Lee, Mi-Kyung;Nam, U-Kyung;Chung, Sun-Hwa;Seog, Geum-Su;Park, Kwang-Sik;Kim, Kyun;Kim, Yong-Hwa
    • Environmental Analysis Health and Toxicology
    • /
    • v.15 no.1_2
    • /
    • pp.19-29
    • /
    • 2000
  • Acetanilide may be released into the environment through air and wastewater from its production and use sites as an intermediate in the synthesis of pharmaceuticals and dyes. Acetanilide is biodegraded rapidly under aerobic conditions and decomposed by indirect photolysis in the presence of OH radicals. An estimated bioconcentration factor of 4.5 suggests that bioaccumulation in aquatic organisms is low. Ecotoxicological data on acetanilide exist on acute toxicity to fishes of 4 species only. According to the EUSES system, the lowest PNEC (Predicted no effect concentration) in fishes is 0.01 mg/1 and PEC (Predicted environmental concentration) for surface water on a regional scale is 9.1$\times$10$\^$-5/mg/l as the worst case. RCR (Risk characterization ratio) of acetanilide for surface water on a regional scale was estimated as 9.1$\times$10-3, which is safe enough for fishes, RCR on a local basis slightly exceeds the value 1 in water and sediment; that is, 1.3 and 1.6, respectively, which suggests the existence of ecotoxicological risk at the vicinity of the manufacturing site. For the refinement of environmental risk assessment on acetanilide, more data should be collected regarding prolonged fish toxicity, acute toxicity toward daphnia and algae. It is, therefore, recommended that acetanilide should be a candidate for further work to supplement the lacking data until it is proved to be safe in the ecotoxicological aspects.

  • PDF

Development of Ecologically Suitable Habitat Model for the Sustainable Sea Cucumber Aquafarm (지속가능한 해삼 양식장 조성을 위한 생태적합 서식처 모형 개발)

  • Oh, Yoon Wha;Kang, Min-Seon;Wi, Jin Hee;Lee, In Tae
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.1
    • /
    • pp.64-79
    • /
    • 2015
  • We investigated the tidal current, hydrographic data, and benthic environment of major sea cucumber (Holothuroidea, de Blainville, 1834) habitats in Baengnyeongdo, Jindo and Uljin to understand the optimal environmental or ecological habitat for sea cucumbers. The three study areas were characterized by a cold-water mass of temperatures ranging $12{\sim}18^{\circ}C$, with an active circulation between the surface and deep waters. According to an analysis of the tidal current map, a strong flow velocity of $100{\sim}120cm\;s^{-1}$ appeared in Baengnyeongdo and Jindo. The three sea cucumber habitats showed the common characters of a bottom sediment composed of sand-silt, a diverse seaweed colony and benthic organisms, and boulders and rocks which provide a hideout for the organisms. We aimed to draw the optimal habitat condition for sea cucumbers in Korea, and the result showed that the low water temperature, rapid water flow, active vertical mixing between surface and deep waters, bottom composed by sand-silt, large rocks, and diverse seaweed colony and benthic organism were important factors. The optimal habitat for Juvenile sea cucumbers was the intertidal areas characterized by a muddy bottom, reef, and seaweed. The optimal habitat for adult sea cucumbers was characterized by a place where sand and mud are mixed, and the body size of the sea cucumber was proportional to water depth, and the relatively large boulders and rocks compared to the intertidal area.

Characteristics in Organic Carbon Distribution in the Seamangeum Area During the Construction of Artificial Sea Dike, Korea (방조제 건설에 따른 새만금 표층 유기탄소 분포 특성)

  • Park, Jun-Kun;Kim, Eun-Soo;Kim, Kyung-Tae;Cho, Sung-Rok;Song, Tae-Yoon;Yoo, Jeong-Kyu;Kim, Seong-Soo;Park, Yong-Chul
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.2
    • /
    • pp.75-83
    • /
    • 2009
  • In order to understand the impacts of the construction of artificial sea dikes on carbon cycle in Samangeum area being a closed environment after April, 2006, we had measured suspended particulate matters, particulate and dissolved organic carbon in the surface water of inner Saemangeum dike from 2003 to 2006. The significant inputs of suspended particulate matter and organic carbon were mainly occurred during the wet season which suggests that most organic matter loading is concentrated within a short period of time inside the dike. The concentrations of particulate matter and organic carbon have gradually increasing every year inside of dike from the Mangyeong river estuary to Saemangeum dike, which has been closed since 2003 after the construction of the 4th dike. The particulate organic carbon increased due to the phytoplankton blooms by eutrophication. If the large portion of particulate organic matter produced in the surface water sink to the bottom sediment, this will cause the anoxic condition in this closed environment.

  • PDF