• Title/Summary/Keyword: Surface roughness and hardness values

Search Result 39, Processing Time 0.023 seconds

Finishing and polishing effects of multiblade burs on the surface texture of 5 resin composites: microhardness and roughness testing

  • Ehrmann, Elodie;Medioni, Etienne;Brulat-Bouchard, Nathalie
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.1
    • /
    • pp.1.1-1.12
    • /
    • 2019
  • Objectives: The aim of this in vitro study was to test the effect of 2 finishing-polishing sequences (QB, combining a 12/15-fluted finishing bur and an EVO-Light polisher; QWB, adding a 30-fluted polishing bur after the 12/15-fluted finishing bur used in the QB sequence) on 5 nanotech-based resin composites (Filtek Z500, Ceram X Mono, Ceram X Duo, Tetric Evoceram, and Tetric Evoceram Bulk Fill) by comparing their final surface roughness and hardness values to those of a Mylar strip control group (MS). Materials and Methods: Twelve specimens of each nanocomposite were prepared in Teflon moulds. The surface of each resin composite was finished with QB (5 samples), QWB (5 samples), or MS (2 samples), and then evaluated (60 samples). Roughness was analysed with an optical profilometer, microhardness was tested with a Vickers indenter, and the surfaces were examined by optical and scanning electron microscopy. Data were analysed using the Kruskal-Wallis test (p < 0.05) followed by the Dunn test. Results: For the hardness and roughness of nanocomposite resin, the QWB sequence was significantly more effective than QB (p < 0.05). The Filtek Z500 showed significantly harder surfaces regardless of the finishing-polishing sequence (p < 0.05). Conclusions: QWB yielded the best values of surface roughness and hardness. The hardness and roughness of the 5 nanocomposites presented less significant differences when QWB was used.

Wire electrical discharge machining of titanium alloy according to the heat treatment conditions (열처리 조건에 따른 티타늄합금의 와이어 방전가공)

  • 김종업;왕덕현;김원일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.930-933
    • /
    • 2001
  • Titanium Alloys used in this experiment has an good corrosion resistance and specific strength, and is the new material developed for medical supplies living goods. In this study the rolled titanium alloy is done by annealing, solution heat-treatment and aging and then is worked by wire EDM. With changing the process conditions, the process properties of surface hardness, surface roughness, shape of process surface and the analysis of ingredients are measured through experiment repeating main cut and finish cut. It is confirmed to gain good measure values as increasing the number of processing of wire EDM. In this experiment the phenomena of processing is studied and the appropriate process condition is proposed.

  • PDF

Evaluation of the Physical Properties of Some Unused Domestic Woods Designed for Woodcraft Materials (목공예적 가치평가를 위한 수종의 국내산 목재의 물리적 특성 평가)

  • Jang, Jae-Hyuk;Kwon, Sung-Min;Kwon, Gu-Joong;Park, Byung-Ho;Febrianto, Fauzi;Kim, Nam-Hun
    • Journal of Forest and Environmental Science
    • /
    • v.26 no.2
    • /
    • pp.131-136
    • /
    • 2010
  • In an effort to evaluate the qualities of the unused woods designed for art materials, Yellow pine, Pitch pine, Suwon poplar, Platanus and Cherry grown in Korea has been investigated in the study. Physical and mechanical properties such as density, hardness, roughness, and abrasion of the woods were examined. Among the five species, Cherry wood showed the highest density in green, air-dried and oven-dried conditions. Hardness of Cherry wood was higher than those of Suwon poplar and Platanus. In softwoods, Pitch pine showed greater hardness than Yellow pine. Yellow pine and Platanus had the highest values of wood surface roughness. Abrasion value of cross, radial and tangential sections was the highest in Yellow pine and Suwon poplar. It has been concluded from the experiment that physical and mechanical properties such as density, hardness, roughness, and abrasion of the woods can be used as an indicator of the suitability for woodcraft material.

Effect of Surface Roughness of Sapphire Wafer on Chemical Mechanical Polishing after Lap-Grinding (랩그라인딩 후 사파이어 웨이퍼의 표면거칠기가 화학기계적 연마에 미치는 영향)

  • Seo, Junyoung;Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.323-329
    • /
    • 2019
  • Sapphire is currently used as a substrate material for blue light-emitting diodes (LEDs). The market for sapphire substrates has expanded rapidly as the use of LEDs has extended into various industries. However, sapphire is classified as one of the most difficult materials to machine due to its hardness and brittleness. Recently, a lap-grinding process has been developed to combine the lapping and diamond mechanical polishing (DMP) steps in a single process. This paper studies, the effect of wafer surface roughness on the chemical mechanical polishing (CMP) process by pressure and abrasive concentration in the lap-grinding process of a sapphire wafer. In this experiment, the surface roughness of a sapphire wafer is measured after lap-grinding by varying the pressure and abrasive concentration of the slurry. CMP is carried out under pressure conditions of 4.27 psi, a plate rotation speed of 103 rpm, head rotation speed of 97 rpm, and slurry flow rate of 170 ml/min. The abrasive concentration of the CMP slurry was 20wt, implying that the higher the surface roughness after lapgrinding, the higher the material removal rate (MRR) in the CMP. This is likely due to the real contact area and actual contact pressure between the rough wafer and polishing pad during the CMP. In addition, wafers with low surface roughness after lap-grinding show lower surface roughness values in CMP processes than wafers with high surface roughness values; therefore, further research is needed to obtain sufficient surface roughness before performing CMP processes.

Observation of surface roughness and grinding angle by automatic barrel finishing process of dental 3D printed resin (3D 프린터로 출력된 치과용 레진의 자동바렐연마공정에 따른 표면 거칠기 및 연마도 관찰)

  • Yu-Jin Park;An-Na Jung
    • Journal of Technologic Dentistry
    • /
    • v.45 no.2
    • /
    • pp.39-47
    • /
    • 2023
  • Purpose: This study aimed to confirm the applicability of gloss polishing using automatic barrel finishing with respect to three-dimensional (3D)-printed resin specimens. The surface roughness and grinding angle of the 3D-printed resin specimens were observed with respect to gloss polishing time using automatic dental barrel finishing. Methods: Herein, experiments were conducted on four types of 3D-printed resin specimens. The specimens, with a thickness of 100 ㎛ each, were printed using a 3D printer. Subsequently, light polymerization was performed on these specimens for 15 min. Post this surface treatment, the specimens underwent grinding for 25 min. This process was followed by gloss polishing at 5-min intervals for up to 25 min using automatic dental barrel finishing. The specimens were photographed using a 3D optical microscope, and their surface roughness and grinding angle were measured. Results: The Ra (centerline average roughness) values of all the specimens, except for crown & bridge 10 group and those in the control group that were not polished using automatic barrel finishing, were <0.2 ㎛. However, polishing time needs to be controlled to realize the desired surface roughness and grinding amount considering the hardness of the resin used. Conclusion: Gloss polishing of 3D-printed resin can be realized using automatic dental barrel finishing. However, polishing time needs to be controlled to realize the desired surface roughness and grinding amount considering the hardness of the resin used.

Surface and Physical Properties of Polymer Insulator Coated with Diamond-Like Carbon Thin Film (DLC 박막이 코팅된 폴리머 애자의 표면 및 물리적 특성)

  • Kim, Young Gon;Park, Yong Seob
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.1
    • /
    • pp.16-20
    • /
    • 2021
  • In this study, we tried finding new materials to improve the stain resistance properties of polymer insulating materials. Using the filtered vacuum arc source (FVAS) with a graphite target source, DLC thin films were deposited on silicon and polymer insulator substrates depending on their thickness to confirm the surface properties, physical properties, and structural properties of the thin films. Subsequently, the possibility of using a DLC thin film as a protective coating material for polymer insulators was confirmed. DLC thin films manufactured in accordance with the thickness of various thin films exhibited a very smooth and uniform surface. As the thin film thickness increased, the surface roughness value decreased and the contact angle value increased. In addition, the elastic modulus and hardness of the DLC thin film slightly increased, and the maximum values of elastic modulus and hardness were 214.5 GPa and 19.8 GPa, respectively. In addition, the DLC thin film showed a very low leakage current value, thereby exhibiting electrical insulation properties.

A Study on Characteristics of TiN Thin Films Deposited by Unbalanced Magnetron Sputtering Method for the Application of Diffusion Barrier Layers in Displays (디스플레이 확산 방지층 응용을 위한 비대칭 마그네트론 스퍼터로 증착된 질화 티타늄 박막의 특성에 대한 연구)

  • Park, Yong Seob
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.2
    • /
    • pp.129-133
    • /
    • 2019
  • TiN thin films were fabricated using an unbalanced magnetron sputtering (UBMS) system, and their structure and surface characteristics as well as their optical and tribological properties were evaluated. The hardness, elastic modulus, adhesive force, surface roughness, and transmittance of the Ti thin films fabricated using the UBMS system were 11.5 GPa, 103 GPa, 27.5 N, 2.45 nm and 20%, respectively. The TiN films prepared with various proportions of nitrogen as the reaction gas exhibited maximum values for the hardness, elastic modulus, critical load, RMS roughness and transmittance of approximately 19.2 GPa, 182 GPa, 27.3 N, 0.98 nm, and 85%, respectively. Moreover, the TiN thin film fabricated under the condition of 30 sccm nitrogen gas showed the optimal physical properties. In summary, the TiN thin films fabricated using the UBMS system exhibited excellent hardness, elastic modulus, adhesion, and smooth surface in addition to good hydrophilic properties.

A Study on Characteristics of Durability for Plunger of High Speed and Ultra-High Pressure Reciprocating Pump Using High Velocity Oxygen Fuel Spraying (초고속 용사 적용 고속 초고압 왕복동 펌프 플런저의 내구성 특성에 관한 연구)

  • Bae, Myung-Whan;Park, Byoung-Ho;Jung, Hwa;Park, Hui-Seong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.20-28
    • /
    • 2014
  • The high velocity oxygen fuel spraying (HVOF) is a kind of surface modification process technology to form the sprayed coating layer after spraying the powder to molten or semi-molten state by the ultra-high speed at the high-temperature heat source and conflicting with a substrate. It is desirable to melt completely the thermal spray powder in order to produce the coating layer with an optimal adhesion, however, because a semi-molten powder in a spray process has the low efficiency and become a factor that degrades the mechanical property by the inducement of pore-forming within the coating layer. To improve the wear resistance, corrosion resistance and heat resistance, in this study, the plungers of high-speed and ultra-high pressure reciprocating hydraulic pumps for oil and water used in ironwork are produced with $420J_2$ and the coating layers of plungers are formed by the powders of WC-Co-Cr and WC-Cr-Ni including the high hardness WC. The surface of these plungers is modified by the super-mirror face grinding machine using variable air pressure developed in this laboratory, and then the characteristics of cross-sectional microstructure, and surface roughness and hardness values between no operation and 100 days-operation are examined and made a comparison. The fine tops and bottoms on surface roughness curve of oil-hydraulic pump plunger sprayed by WC-Cr-Ni are molded more and higher than those of water-hydraulic pump sprayed by WC-Co-Cr because the plunger diameter of oil-hydraulic pump is 0.4 times smaller than that of water-hydraulic pump and the pressure of oil-hydraulic pump exerted on the plunger is operated with the 70 bars higher than that of water-hydraulic pump. As a result, it is found that the values of centerline average surface roughness and maximum height for oil-hydraulic pump plunger are bigger than those of water-hydraulic pump plunger.

Characterization of Thin Film Materials by Nanoindentation and Scanning Probe Microscopy (나노인덴테이션과 주사탐침현미경을 이용한 박막 재료의 특성평가)

  • Kim, Bong-seob;Yun, Jon-do;Kim, Jong-kuk
    • Korean Journal of Materials Research
    • /
    • v.13 no.9
    • /
    • pp.606-612
    • /
    • 2003
  • Surface and mechanical properties of thin films with submicron thickness was characterized by nanoindentation with Berkovich and Vickers tips, and scanning probe microscopy. Nanoindention was made in a depth range of 15 to 200 nm from the surface by applying tiny force in a range from 150 to $9,000 \mu$N. Stiffness, contact area, hardness, and elastic modulus were determined from the force-displacement curve obtained. Reliability was first tested by using fused quartz, a standard sample. Elastic modulus and hardness values of fused quartz measured were the same as those reported in the literature within two percent of error. Mechanical properties of ITO thin film were characterized in a depth range of 15∼200nm. As indentation depth increased, elastic modulus and hardness decreased by substrate effect. Ion beam deposited DLC thin films were indented in a depth range of 40∼50 nm. The results showed that the DLC thin film using benzene and bias voltage 0∼-50 V has elastic modulus and hardness value of 132 and 18 GPa respectively. Pure DLC thin films showed roughnesses lower than 0.25 nm, but silicon-added DLC thin films showed much higher roughness values, and the wavy surface morphology.

Wear Characteristics of Metal Ball and Seat for Metal-Seated Ball Valve (금속 볼 밸브의 볼·시트 마멸 특성에 관한 실험적 연구)

  • Bae, Junho;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.32 no.1
    • /
    • pp.32-37
    • /
    • 2016
  • The wear characteristics of metal ball and seat in a metal-seated ball valve significantly affect the performances such as leakage and valve torque. In this work, the wear characteristics of metal ball and seat are experimentally investigated. A stainless steel ball and seat with a high corrosion-resistant coating are prepared and a component level test was performed. The hardness and surface roughness of specimens cut from the metal ball and seat are measured before and after the test using a micro-Vickers hardness tester and confocal microscopy, respectively. In order to assess the wear characteristics, the surfaces of the specimens are carefully examined after the test. The confocal microscope data show that the surface roughness values of both the ball and seat increase by a factor of 3-4, which may lead to an increase in valve torque. However, the wear of the seat is found to be more significant than that of the ball. In addition, a comparison of the surfaces of the ball and seat before and after testing revealed that adhesive and abrasive wear are the major wear mechanisms. The results of this study may aid in the design of metal-seated ball valves from the tribological point of view.