• Title/Summary/Keyword: Surface regeneration

Search Result 446, Processing Time 0.033 seconds

The evaluation of healing patterns in surgically created circumferential gap defects around dental implants according to implant surface, defect width and defect morphology

  • Im, Se-Ung;Hong, Ji-Youn;Chae, Gyung-Joon;Jung, Ui-Won;Kim, Chang-Sung;Lee, Yong-Keun;Cho, Kyoo-Sung;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.sup2
    • /
    • pp.385-394
    • /
    • 2008
  • Purpose: The aim of this study was to evaluate the factors affecting healing patterns of surgically created circumferential gap defects around implants in dogs. Materials and Methods: In four mongrel dogs, all mandibular premolars were extracted. After 8 weeks of healing periods, implants were submerged. According to the surface treatment, turned surface was designated as a group A and rough surface as a group B. In each dog, surgical defects on the left side were made with a customized tapered step drill and on the right with a customized paralleled drill. Groups were also divided according to the width of the coronal gaps: 1.0mm, 1.5mm, or 2.0mm. The dogs were sacrificed following 8 weeks and the specimens were analyzed histologically and histomorphometrically. Results: During the postoperative period, healing was uneventful and implants were well-maintained. As the size of the coronal gap was increased, the amount of bone-to-implant contact was decreased. The bone healing was greater in rough surface implants compared to the turned ones. About the defect morphology, tapered shape showed much bone healing and direct bone to implant contact even in the smooth surface implants. Conclusion: Healing of the circumferential defect around dental implant is influenced by the implant surface, defect width and the morphology of the defect. When using rough surface implants, circumferential gap defects within 2 mm do not need any kinds of regenerative procedures and the healing appeared to be faster in the tapered defect morphology than the paralleled one.

AN IMMUNOHISTOCHEMICAL STUDY OF THE DISTRIBUTION OF FIBRONECTIN, LAMININ AND TENASCIN IN THE REGENERATING PERIODONTAL TISSUE (재생중인 치주조직내 Fibronectin, Laminin 및 Tensacin의 분포에 관한 면역조직화학적 연구)

  • Chung, Gap-Hwan;Kim, Byung-Ok;Han, Kyung-Yoon
    • Journal of Periodontal and Implant Science
    • /
    • v.25 no.2
    • /
    • pp.321-340
    • /
    • 1995
  • The regeneration of destructed periodontal tissues is one of the ultimate objectives of periodontal therapy. Guided tissue regeneration technique was developed for the ideal regeneration of periodontal tissues. In order to investigate the role of fibronectin, laminin and tenascin in the regenerating process of periodontal tissues, the expanded PTFE barrier membranes(Gore Associates, USA) removed from the patients who had been treated by guided tissue regeneration(GTR) and guided bone regeneration(GBR) techniques were fixed in neutral formalin for 6-24 hours, embedded with paraffin, sectioned at $4-6{\mu}m$ in thickness, and immunohistochemically processed by Avidin-Biotin peroxidase complex method for detecting fibronectin, laminin and tenascin. Monoclonal mouse anti-human fibronectin antibody(Oncogene Science, USA., 1:100), monoclonal mouse anti-human laminin antibody(Oncogene Science, USA., 1:50) and mouse anti-human tenascin antibody(Oncogene Science, USA, 1:10) were used as primary antibodies. The light microscopic findings were as follows: (1) The distribution of fibronectin, laminin and tenascin was various according to the area of barrier membranes. (2) The distribution of fibronectin in case of GBR was extensive in the tissue on the outer surface of barrier membranes, and rare in the intervening space and on the inner surface. In case of GTR it was extensive on the outer surface and in the intervening space, and rare on the inner surface. (3) The distribution of laminin was rare in the tissue on the outer, the inner surface and intervening space of barrier membranes, regardless of GBR or GTR. (4) In case 'of GBR rare distribution of tenascin was observed on the outer surface only, except the inner surface and the intervening space of barrier membranes. In case of GTR the distribution of tenascin was extensive in the tissue on the outer surface, rare in intervening space and the inner surface. The results suggest that fibronectin, laminin and tenascin may play a important role in the regenerating process of periodontal tissue, and they may affect the outcome of healing.

  • PDF

Estimation of Nutrients Transport in Kamak Bay using the Eco-hydrodynamic Model (생태계모델을 이용한 가막만의 영양염 거동 특성 평가)

  • 김동명
    • Journal of Environmental Science International
    • /
    • v.12 no.7
    • /
    • pp.745-751
    • /
    • 2003
  • The three-dimensional eco-hydrodynamic model was applied to estimate the physical process in terms of nutrients and net uptake(or regeneration) rate of nutrients in Kamak Bay for scenario analysis to find proper management plan. The estimation results of the physical process in terms of nutrients shelved that transportation of nutrients is dominant in surface level while accumulation of nutrients is dominant in bottom level. In the case of dissolved inorganic nitrogen, the results showed that the net uptake rate was 0∼60 mg/㎡/day in surface level(0∼3m), and the net regeneration rate was 0.0∼10.0 mg/㎡/day in middle level(3∼6m) and above 10mg/㎡/day in bottom level(6m∼below). In the case of dissolved inorganic phosphorus, the net uptake rate was 0.0∼3.0 mg/㎡/day in surface level, and the net regeneration rate was 0.5∼1.5 mg/㎡/day in middle level and 1.0∼3.0 mg/㎡/day in bottom level. These results indicates that net uptake and transport of nutrients are occurred predominantly at the surface level and the net generation and accumulation are dominant at bottom level. Therefore, it is important to consider the re-supplement of nutrients due to regeneration of bottom water.

The Effects of various Regeneration techniques on Bone Regeneration around Dental Implant (수종의 재생 술식 시행이 매식체 근원심부의 골재생에 미치는 영향)

  • Lee, Myung-Ja;Lim, Sung-Bin;Chung, Chin-Hyung;Hong, Ki-Seok
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.2
    • /
    • pp.383-399
    • /
    • 2005
  • The successful implantation necessitate tissue regeneration m site of future implant placement, there being severe bone defect. Therapeutic approaches to tissue regeneration in the site have used bone grafts, root surface treatments, barrier membranes, and growth factors, the same way being applied to periodontal tissue regeneration. Great interest in periodontal tissue regeneration has lead to research in bone graft, guided-tissue regeneration, and the administration of growth factors as possible means of regenerating lost periodontal tissue. The blood component separated by centrifuging the blood is the platelet-rich plasma. There are growth factors, PDGF, $TGF{beta}1$, $TGF{beta}2$ and IGF in the platelet-rich plasma. The purpose of this study was to study the histopathological correlation between the use of platelet-rich plasma and the healing of bone defect around implant fixture site. Implant fixtures were inserted and graft materials were placed into the left femur of in the experimental group, while the control group received only implant fixtures. In the first experimental group, platelet-rich plasma and BBP xenograft were placed at the implant fixture site, and the second experimental group had platelet-rich plasma, BBP xenograft, and the e-PTFE membrane placed at the fixture site. The degree of bone regeneration adjacent to the implant fixture was observed and compared histopathologically at 2, 4, and 8 weeks after implant fixture insertion. The results of the experiment were as follows: 1. Bone remodeling in acid etched surface near the implant fixture of all experimental groups was found to be greater than new bone formation. 2. Bone remodeling in acid etched surface distant to the implant fixture of all experimental groups was decreased and new bone formation was not changed. 3. Significant new bone formation in machined surface near the implant fixture of bothl experimental groups was observed in 2 weeks. 4. New bone formation in machined surface distant to the implant fixture of both experimental groups was observed. Bone remodeling was significant in near the implant fixture and not in distant to the implant fixture. The results of the experiment suggested that the change of bone formation around implant. Remodeling in machined surface distant to the implant fixture of both experimental groups, and new bone formation and remodeling near the implant fixture were significant.

Influence of Implant Surface Coated with pH Buffering Agent on Early Osseointegration

  • Kang, Joo Hyun;Kim, Su-Kyoung;Pae, Hyung Chul;Park, Jin Young;Cha, Jae-Kook;Choi, Seong-Ho
    • Journal of Korean Dental Science
    • /
    • v.11 no.1
    • /
    • pp.5-13
    • /
    • 2018
  • Purpose: Surface treatment with pH buffering agent has been developed to achieve higher and faster osseointegration. The aim of this study was to evaluate its influence by measuring removal torque and analyzing histological characteristics. Materials and Methods: Titanium implants with following surfaces were used in this study: sand-blasted acid-etched (SA) surface (SA group as control I group), SA surface in calcium chloride aqueous solution (CA group as control II group) and SA surface coated with pH buffering agent (pH group as test group). Removal torque test after 2 weeks and bone-to-implant contact and bone area analyses at 2 and 4 weeks were performed. Result: The rotational torque values at 2 weeks were significantly higher in pH group ($107.5{\pm}6.2Ncm$, P<0.05). The mean values of bone-to-implant contact at 2 and 4 weeks were both higher in pH group ($93.0%{\pm}6.4%$ at 2 weeks, $88.6%{\pm}5.5%$ at 4 weeks) than in SA group ($49.7%{\pm}9.7%$ at 2 weeks, $47.3%{\pm}20.1%$ at 4 weeks) and CA group ($73.7%{\pm}12.4%$ at 2 weeks, $72.5%{\pm}10.9%$ at 4 weeks) with significances (P<0.05). The means of bone area showed significantly higher numbers in pH group ($39.5%{\pm}11.3%$ at 2 weeks, $71.9%{\pm}10.9%$ at 4 weeks, P<0.05). Conclusion: Our findings demonstrated that surface modification with pH buffering agent improved early osseointegration with superior biomechanical property.

Changes of Adsorption Capacity and Structural Properties during in situ Regeneration of Activated Carbon Bed Using Ozonated Water (오존수 산화를 이용한 활성탄 흡착탑의 현장 재생 시 흡착용량 및 구조특성의 변화)

  • Lee, Jinjoo;Lee, Kisay
    • Applied Chemistry for Engineering
    • /
    • v.31 no.3
    • /
    • pp.341-345
    • /
    • 2020
  • An in situ regeneration of activated carbon bed using an ozonated water was studied in order for avoiding the carbon loss, contaminant emission and time consuming for discharge-regeneration-repacking in a conventional thermal regeneration process. Using phenol and polyethylene glycol (PEG) as adsorbates, the adsorption breakthrough and in situ regeneration with the ozonated water were repeated. These organics were supposed to degrade by the oxidation reaction of ozone, regenerating the bed for reuse. As the number of regeneration increased, the adsorption capacity for phenol was reduced, but the change was stabilized showing no further reduction after reaching a certain degree of decrement. The reduction of adsorption capacity was due to the increase of pore size resulting in the decrease of specific surface area during ozonation. The adsorption capacity of phenol decreased after the ozonated regeneration because the in-pore adsorption was prevalent for small molecules like phenol. However, PEG did not show such decrease and the adsorption capacity was constantly maintained after several cycles of the ozonated regeneration probably because the external surface adsorption was the major mechanism for large molecules like PEG. Since the reduction in the pore size and specific surface area for small molecules were proportional to the duration of contact time with the ozonated water, careful considerations of the solute size to be removed and controlling the contact time were necessary to enhance the performance of the ozonated in situ regeneration of activated carbon bed.

Bioactive characteristics of an implant surface coated with a pH buffering agent: an in vitro study

  • Pae, Hyung-Chul;Kim, Su-Kyoung;Park, Jin-Young;Song, Young Woo;Cha, Jae-Kook;Paik, Jeong-Won;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.6
    • /
    • pp.366-381
    • /
    • 2019
  • Purpose: The purpose of this study was to evaluate the effectiveness of conventional sandblasted, large-grit, acid-etched (SLA) surface coated with a pH buffering solution based on surface wettability, blood protein adhesion, osteoblast affinity, and platelet adhesion and activation. Methods: Titanium discs and implants with conventional SLA surface (SA), SLA surface in an aqueous calcium chloride solution (CA), and SLA surface with a pH buffering agent (SOI) were prepared. The wetting velocity was measured by the number of threads wetted by blood over an interval of time. Serum albumin adsorption was tested using the bicinchoninic acid assay and by measuring fluorescence intensity. Osteoblast activity assays (osteoblast adhesion, proliferation, differentiation, mineralization, and migration) were also performed, and platelet adhesion and activation assays were conducted. Results: In both the wetting velocity test and the serum albumin adsorption assay, the SOI surface displayed a significantly higher wetting velocity than the SA surface (P=0.000 and P=0.000, respectively). In the osteoblast adhesion, proliferation, differentiation, and mineralization tests, the mean values for SOI were all higher than those for SA and CA. On the osteoblast migration, platelet adhesion, and activation tests, SOI also showed significantly higher values than SA (P=0.040, P=0.000, and P=0.000, respectively). Conclusions: SOI exhibited higher hydrophilicity and affinity for proteins, cells, and platelets than SA. Within the limits of this study, it may be concluded that coating an implant with a pH buffering agent can induce the attachment of platelets, proteins, and cells to the implant surface. Further studies should be conducted to directly compare SOI with other conventional surfaces with regard to its safety and effectiveness in clinical settings.

The effects of Hydroxyapatite nano-coating implants on healing of surgically created circumferential gap in dogs

  • Chae, Gyung-Joon;Lim, Hyun-Chang;Choi, Jung-Yoo;Chung, Sung-Min;Lee, In-Seop;Cho, Kyoo-Sung;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.sup2
    • /
    • pp.373-384
    • /
    • 2008
  • Purpose: The aim of this study is to compare the healing response of various Hydroxyapatite(HA) coated dental implants by Ion-Beam Assisted Deposition(IBAD) placed in the surgically created circumferential gap in dogs. Materials and methods: In four mongrel dogs, all mandibular premolars and the first molar were extracted. After an 8 weeks healing period, six submerged type implants were placed and the circumferential cylindrical 2mm coronal defects around the implants were made surgically with customized step drills. Groups were divided into six groups : anodized surface, anodized surface with 150nm HA and heat treatment, anodized surface with 300nm HA and heat treatment, anodized surface with 150nm HA and no heat treatment, and anodized surface with 150nm HA, heat treatment and bone graft, anodized surface with bone graft. The dogs were sacrificed following 12 weeks healing period. Specimens were analyzed histologically and histomorphometrically. Results: During the healing period, healing was uneventful and implants were well maintained. Anodized surface with HA coating and $430^{\circ}C$ heat treatment showed an improved regenerative characteristics. Most of the gaps were filled with newly regenerated bone. The implant surface was covered with bone layer as base for intensive bone formation and remodeling. In case that graft the alloplastic material to the gaps, most of the coronal gaps were filled with newly formed bone and remaining graft particles. The bone-implant contact and bone density parameters showed similar results with the histological findings. The bone graft group presented the best bone-implant contact value which had statistical significance. Conclusion: Within the scope of this study, nano-scale HA coated dental implants appeared to have significant effect on the development of new bone formation. And additional bone graft is an effective method in overcoming the gaps around the implants.

The retrospective study of survival rate of implants with maxillary sinus floor elevation (상악동 거상술을 동반한 임플란트 식립 후 생존율에 대한 후향적 연구)

  • Yu, Jeoung-A;Lee, Sang-Min;Yoo, Mi-Kyung;Jung, Ui-Won;Kim, Chang-Sung;Choi, Seong-Ho;Park, Pil-Kyoo;Cho, Kyoo-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.39 no.3
    • /
    • pp.293-301
    • /
    • 2009
  • Purpose: The purpose of this study is to show the total survival rate of implants with maxillary sinus floor elevation and the effects that reach the survival rate by classifying types of graft materials, implant surface, operation method, bone height. Methods: In a total of 131 patients, 251 implants with sinus floor elevation were installed simultaneously or after regular healing. Various bone grafts (autograft, xonograft, allograft, alloplast) and implant surface (MTX-HA implant, chemical etching implant, Titanium oxide surface implant, resorbable blasting media implant, resorbable blast texturing implant, HA-coated implant) were used. All implants were investigated clinically and radiographically, being with 1 to 5 years follow-up period after installation. Results: The survival rate of 251 implants with maxillary sinus floor elevation was 94%. The types of implant, surface, graft material, bone height have no statistically signi-ficant differencies. Conclusions: It can be suggested that maxillary sinus floor elevation may have predictable result with various bone graft materials and implant surface.