• Title/Summary/Keyword: Surface protection materials

검색결과 232건 처리시간 0.031초

해양구조물의 방식을 위한 알루미늄 합금의 희생양극적 부식 특성의 전기화학적 평가 (Electrochemical Evaluation of Corrosion Properties of Aluminum Alloy as a Sacrificial Anode for Offshore Structure Protection)

  • 이진호;이재호
    • 한국표면공학회지
    • /
    • 제48권2호
    • /
    • pp.68-72
    • /
    • 2015
  • The corrosion behavior of metals and alloys for the safety of offshore structures in seawater was investigated for the application of sacrificial anodes. The experiments were focused on the polarization behaviors and the surface morphology of each metal after experiments. Pure Zn, pure Al (Al1050), Al alloys (Al5052, Al6061), Mg alloys (AZ31, AZ91D) and steel (SCM440) were assessed in 3.5% sodium chloride solution by means of potentiodynamic polarization to verify the galvanic corrosion potential ($E_{couple}$). Potentiostat plots were plotted to compare the surface and corrosion current density ($i_{couple}$) of metals as sacrificial anodes in seawater to protect steel alloy as a cathode. Al alloys showed the best performance as a sacrificial anode, on the other hand, Mg alloys showed overprotection behavior. The surface morphologies of sacrificial anodes were observed by FESEM and compared.

Reference Electrode for Monitoring Cathodic Protection Potential

  • Panossian, Z.;Abud, S.E.
    • Corrosion Science and Technology
    • /
    • 제16권5호
    • /
    • pp.227-234
    • /
    • 2017
  • Reference electrodes are generally implemented for the purpose of monitoring the cathodic protection potentials of buried or immersed metallic structures. In the market, many types of reference electrodes are available for this purpose, such as saturated calomel, silver/silver chloride and copper/copper sulfate. These electrodes contain a porous ceramic junction plate situated in the cylindrical body bottom to permit ionic flux between the internal electrolyte (of the reference electrode) and the external electrolyte. In this work, the copper/copper sulfate reference electrode was modified by replacing the porous ceramic junction plate for a metallic platinum wire. The main purpose of this modification was to avoid the ion copper transport from coming from the inner reference electrode solution into the surrounding electrolyte, and to mitigate the copper plating on the coupon surfaces. Lab tests were performed in order to compare the performance of the two mentioned reference electrodes. We verified that the experimental errors associated with the measurements conducted with developed reference electrode would be negligible, as the platinum surface area exposed to the surrounding electrolyte and/or to the reference electrolyte are maintained as small as possible.

An optimized condition for corrosion protection of Type 304 Films prepared by unbalanced magnetron sputtering in 3.5% NaCl solution

  • Yoo, Ji-Hong;Ahn, Seung-Ho;Kim, Jung-Gu;Lee, Sang-Yul
    • 한국표면공학회지
    • /
    • 제34권5호
    • /
    • pp.465-474
    • /
    • 2001
  • Type 304SS coatings were performed at 200$\square$ onto AISI 1045 carbon steel substrate using unbalanced magnetron sputtering (UBMS) with an austenitic AISI 304 stainless steel (SS) target of 100mm diameter. The total deposition pressure in the active Ar gas was 2$\times$10$^{-3}$ Torr. Coatings were done at various target power densities and bias voltages. Chemical compositions of metallic elements of the coatings were measured by energy dispersive X-rays spectroscopy (EDS). The structure and the morphology of Type 304SS coatings were investigated by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). Corrosion properties of the coated specimens were examined using electrochemical polarization measurements and electrochemical impedance spectroscopy in a deaerated 3.5% NaCl solution. The porosity rate was obtained from a comparison of the dc polarization resistance of the uncoated and coated substrates. Scratch adhesion testing was used to compare the critical loads for different coatings. XRD results showed that the sputtered films exhibit a ferritic b.c.c. $\alpha$-phase. Potentiodynamic polarization curves indicated that all samples had much higher corrosion potential and better corrosion resistance than the bare steel substrate. The corrosion performance increased with increasing power density and the adhesion was enhanced at the bias voltage of -50V. An improvement in the corrosion resistance can be obtained with a better coating adhesion. Finally, an optimized deposition condition for corrosion protection was found as $40W/cm^2$ and -50V.

  • PDF

금 증착 적외선 반사판의 반사율 및 수명에 미치는 제조공정 변수의 영향 (Influence of Manufacturing Conditions on the Reflectance and Life Time of the Gold Protected IR Mirror)

  • 최용선;이영기;이유기
    • 한국재료학회지
    • /
    • 제28권4호
    • /
    • pp.201-207
    • /
    • 2018
  • Infrared(IR) heating has many advantages, such as energy efficiency, reduced heating time, cleanliness, equipment compactness, high drying rate and easy automation. These features of IR heating provide widely industrial applications, such as surface heat treatment in semiconductor fabrication, thermoforming of polymers, drying and disinfection of food products, heating to metal forging, and drying of wet materials. In this study, the characteristics of a protected gold mirror were examined by spectrophotometer and the lifetime of the coating layers were evaluated by a cross-cutting method and salt spray test. The effects of manufacturing conditions on the protected gold mirror were seen and remedies for these effects were noted in order to improve the properties of the protected gold mirror in the drying process. The reflectance and lifetime of the protected gold mirror was influenced by manufacturing conditions, such as surface roughness and forming conditions of the anti-oxide layer, the adhesion layer, the reflecting layer and the protection layer. The results of this study showed that the protected gold mirror manufactured using a buffing method for pre-treatment resulted in the most effective reflectance. In addition, $Al_2O_3$ coating on an Al substrate as an anti-oxide layer was more effective than the anodizing process in the test of reflectance. Furthermore, the protected gold mirror manufactured by layers forming of various materials resulted in the most effective reflectance and lifetime when coated with $Al_2O_3$ as the anti-oxide layer, coated Cr as the adhesion layer, and coated $MgF_2$ as the protection layer.

Ultrasonic electrochemical deposition and characterization of Ni-SiC nanocomposite coatings

  • Gyawalia, Gobinda;Woo, Dong-Jin;Lee, Soo-Wohn
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2011년도 춘계학술대회 및 Fine pattern PCB 표면 처리 기술 워크샵
    • /
    • pp.58-58
    • /
    • 2011
  • Nickel-ceramics nanocomposite coatings can be applied as the wear resistance coating, corrosion protection of underlying materials, and decorative coatings. Hence, Nickel based nanocomposite coatings, especially Ni-SiC, have been extensively studied in recent years. However, more often agglomeration problem of the nanoparticles in the nickel matrix can cause deterioration of the mechanical properties rather than improvement. The homogeneous distribution of the nanoparticles in the matrix coating is still being challenging. In this experiment, electrochemical deposition of Ni-SiC composite coating was done in presence of ultrasound. The effects of different ultrasonic powers and frequencies on the nanoparticle dispersion were studied. The electrodeposition was carried out in nickel sulfamate bath by applying pulse current technique. Compared to the conventional mechanical stirring technique to prevent nanoparticles agglomeration and sedimentation during composite electrodeposition, the aid of ultrasonic dispersion along with mechanical stirring has been found to be more effective not only for the nanoparticles dispersion, but also for the mechanical properties of the electrodeposited coatings. Nanoparticles were found to be distributed homogeneously with reduced agglomeration. The microstructure of the composite coating has also been changed, allowing some random orientations of the nickel crystallite grain growths, smooth surface, and finer grains. As a consequence, better mechanical properties of the composites were observed.

  • PDF

Ten-Year Performance of Shell-Treated Wooden Deck

  • RA, Jong Bum
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권6호
    • /
    • pp.667-673
    • /
    • 2019
  • The performance of a wooden deck made of refractory materials that have difficulties in achieving target penetrations as stipulated in the specification and quality standards for treated wood in Korea, was assessed via a case study in this research. A wooden deck built in Jinju in 2009 was selected for this study because of its fabrication method using pressure and treated refractory materials. The penetration and retention analysis did not satisfy the domestic standard for treated wood. Inspection of the deck in 2019 revealed that the deck had been attacked by decay fungi. Cap rails showed much deeper and wider checking on their surface compared with the top and base rails, resulting in a severe fungal attack. The decking boards exhibited severe fungal decay primarily in the end parts. However, the rails and balusters without checks and posts were virtually free of fungal attack irrespective of the preservative penetration measures. Copper content in the soil 5 cm away from the deck was less than 150 mg/kg, implying that copper movement in the soil was very limited. These results suggest that the inhibition of surface propagation and the protection of end surfaces are essential factors in increasing the longevity of treated wooden decks; further, the results also showed that the deck was within an acceptable range from the point of copper contamination.

Influence of the Thin-Film Ag Electrode Deposition Thickness on the Current Characteristics of a CVD Diamond Radiation Detector

  • Ban, Chae-Min;Lee, Chul-Yong;Jun, Byung-Hyuk
    • Journal of Radiation Protection and Research
    • /
    • 제43권4호
    • /
    • pp.131-136
    • /
    • 2018
  • Background: We investigated the current characteristics of a thin-film Ag electrode on a chemical vapor deposition (CVD) diamond. The CVD diamond is widely recognized as a radiation detection material because of its high tolerance against high radiation, stable response to various dose rates, and good sensitivity. Additionally, thin-film Ag has been widely used as an electrode with high electrical conductivity. Materials and Methods: Considering these properties, the thin-film Ag electrode was deposited onto CVD diamonds with varied deposition thicknesses (${\fallingdotseq}50/98/152/257nm$); subsequently, the surface thickness, surface roughness, leakage current, and photo-current were characterized. Results and Discussion: The leakage current was found to be very low, and the photo-current output signal was observed as stable for a deposited film thickness of 98 nm; at this thickness, a uniform and constant surface roughness of the deposited thin-film Ag electrode were obtained. Conclusion: We found that a CVD diamond radiation detector with a thin-film Ag electrode deposition thickness close to 100 nm exhibited minimal leakage current and yielded a highly stable output signal.

Surface Treatment of Eggshells with Low-Energy Electron Beam

  • Kataoka, Noriaki;Kawahara, Daigo;Sekiguchi, Masayuki
    • Journal of Radiation Protection and Research
    • /
    • 제46권1호
    • /
    • pp.8-13
    • /
    • 2021
  • Background: Salmonella enteritidis (SE) was the main cause of the pandemic of foodborne salmonellosis. The surface of eggs' shells can be contaminated with this bacterium; however, washing them with sodium hypochlorite solution not only reduces their flavor but also heavily impacts the environment. An alternative to this is surface sterilization using low-energy electron beam. It is known that irradiation with 1 kGy resulted in a significant 3.9 log reduction (reduction factor of 10,000) in detectable SE on the shell. FAO/IAEA/WHO indicates irradiation of any food commodity up to an overall average dose of 10 kGy presents no toxicological hazard. On the other hand, the Food and Drug Administration has deemed a dose of up to 3 kGy is allowable for eggs. However, the maximum dose permitted to be absorbed by an edible part (i.e., internal dose) is 0.1 Gy in Japan and 0.5 Gy in European Union. Materials and Methods: The electron beam (EB) depth dose distribution in the eggshell was calculated by the Monte Carlo method. The internal dose was also estimated by Monte Carlo simulation and experimentation. Results and Discussion: The EB depth dose distribution for the eggshells indicated that acceleration voltages between 80 and 200 kV were optimal for eggshell sterilization. It was also found that acceleration voltages between 80 and 150 kV were suitable for reducing the internal dose to ≤ 0.10 Gy. Conclusion: The optimum irradiative conditions for sterilizing only eggshells with an EB were between 80 and 150 kV.

조경용 투수성 블록포장의 열특성 (Thermal Characteristics of Permeable Block Pavements for Landscape Construction)

  • 한승호;류남형;윤용한;김원태;강진형
    • 한국환경과학회지
    • /
    • 제17권5호
    • /
    • pp.573-580
    • /
    • 2008
  • This study aims to measure and to analyze the characteristics of thermal environment of the various permeable pavement materials such as a break stone pavement (Green block cubic), soil protection pavement (Soil tector), soil cement pavement and ceramic brick pavement under the summer outdoor environment. The thermal environment characteristics measured in the study includes the changes of surface temperature during the day, and long and short wave radiation of each pavement surface. The experimental condition is based on the data on the hottest temperature (August 9, 2006, $37.1^{\circ}C$) of the year. The albedo was the highest on the break stone pavement(0.8) from 12:00 to 14:00. The albedo of the ceramic brick pavement, a soil tector pavement and soil cement pavement were 0.35, 0.29 and 0.27 from 12:00 to 14:00, respectively. The peak surface temperature and long wave radiation was the highest on the soil protection pavements($56.6^{\circ}C$/627 W/$m^2$). The peak surface temperatures and long wave radiation on the ceramic brick pavement, a stone brick pavement and soil cement pavement were $51.7^{\circ}C$/627 W/$m^2$, $48.8^{\circ}C$/607 W/$m^2$ and $45.9^{\circ}C$/582 W/$m^2$, respectively. The heat environment was better on the break stone pavement than on the other pavements. This is mainly due to the high albedo of the break stone pavement(0.8) while the albedo value of a ceramic brick pavement, a soil tactor pavement and soil cement pavement were 0.35. 0.29 and 0.27. Large heat capacity($2,629kJ/m^3{\cdot}K$) of the stone brick pavements also contributes to this difference. The heat environment was better on the soil cement pavement than the soil tector pavement. This is mainly due to the evaporation of the soil cement pavement while the active evaporation of the soil tactor pavement was not continued after two days from the rainfall event. To improve the thermal environments in the urban area, it is recommended to raise the albedo of the pavements by brightening the surface color of the pavement materials. Further studies on the pavement materials and the construction methods which can enhance the continuous evapotranspiration from the pavements surface are needed.

스크랩 장입 비율에 따른 다이캐스팅용 알루미늄 합금의 부식 특성 (Corrosion Characteristics of Aluminum Die Casting Alloys with Different Scrap Charge Rate)

  • 김준호;이승효
    • 한국표면공학회지
    • /
    • 제53권6호
    • /
    • pp.322-329
    • /
    • 2020
  • The utilization of aluminum scrap is a subject of great importance in terms of reducing energy consumption and environmental protection. However, aluminum scrap contains impurities, which can degrade the properties of aluminum alloy, especially corrosion resistance. This study examines the effect of scrap charge rate of aluminum alloys about microstructures and corrosion characteristics. According to the metallographic examinations, Mg2Si tended to become coarser and its uniformity was decreased by increasing aluminum scrap charge rate. The immersion test exhibited corrosion progressed through the eutectic areas due to micro-galvanic interactions. Electrochemical measurements revealed that excess aluminum scrap could reduce the intergranular corrosion resistance of aluminum alloys. Results showed that the scrap charge rate is important factor in the design of corrosion resistance of aluminum die casting alloys.