• Title/Summary/Keyword: Surface profile measurement

Search Result 243, Processing Time 0.026 seconds

Development of SFM System for Nano In-Process Profile Measurement (나노인프로세스 표면형상계측을 위한 SFM시스템의 개발)

  • Kweon, Hyun-Kyu;Choi, Seong-Dae;Hong, Sung-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.2
    • /
    • pp.53-59
    • /
    • 2004
  • In this paper, we propose a new multi-purpose Scanning Force Microscope (SFM) system. The system can be used for nano/micro-scratching, in-process profile measurement, and observation of potential surface defects which occur during the scratching in air or liquid. Experimental results of nano/micro-scratching show that the smallest scratching depth can be controlled to be 10nm, which corresponds to the stability of the SFM system. Profile measurements of nano/micro-scratching surfaces have also been performed by the method of on-machine measurement and in-process measurement. Two measurement results were in good agreement with each other. The maximum difference was approximately 10 nm, which was mainly caused by the sampling repeatability error that influences the measurement accuracy Also, micro-defects on the micro-scratching surface were successfully detected by the SFM system. It was confirmed that the number of micro-defects increases when the surface is subjected to a cyclic bending load. The maximum depth was less than 100nm.

  • PDF

Measurement of Heat (Mass) Transfer Coefficient on the Blade Surfaces of a Linear Turbine Rotor Cascade With a Four-Axis Naphthalene Profile Measuring System (4-축 나프탈렌 승화깊이 측정시스템을 이용한 터빈 블레이드 표면에서의 열(물질)전달계수 측정)

  • Kwon, Hyun-Goo;Lee, Sang-Woo;Park, Byung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.42-47
    • /
    • 2001
  • The heat (mass) transfer characteristics on the blade surface of a first-stage turbine rotor cascade for power generation has been investigated by employing the naphthalene sublimation technique. A four-axis profile measurement system is successfully developed for the measurements of the local heat (mass) transfer coefficient on the curved blade surface. The experiment is carried out at the free-stream Reynolds number and turbulence intensity of $2.09\times10^5$ and 1.2%. The results on the blade surfaces show that the local heat (mass) transfer on the suction surface is strongly influenced by the endwall vortices, but that on the pressure surface shows a nearly two-dimensional nature. The pressure surface has a more uniform distribution of heat load than the suction one.

  • PDF

Effects of stylus tip radius on the measuring error in surface topography measurement by contact stylus profilometer (접촉식 형상 측정기에 의한 표면 미세 형상 측정시 촉침 반경이 측정오차에 미치는 영향)

  • 권기환
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.613-617
    • /
    • 2000
  • This paper descries the effect of the stylus tip size on the measuring error in surface topography measurement. To analyze the distortional effect of an actual surface geometry originating from the finite stylus size, the surface is modeled as a sinusoid and the stylus tip as a circle. the measuring error is defined as the ratio of the standard deviation of a tracing profile and an original profile. It is shown that this measuring error depends on the amplitude and wavelength of an original profile. In this paper, the spectrum analysis is applied to investigate the distortional effect due to the mechanical filtering of the stylus in the frequency domain. and, the cumulative power spectrum is applied to determinate the minimum wavelength limits to be measured with the various stylus tip radius from these results, a new method to select proper stylus tip radius is proposed.

  • PDF

A curvature profilometry using white-light (백색광을 이용한 곡률 측정법 개발)

  • Kim, Byoung-Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.3
    • /
    • pp.81-86
    • /
    • 2008
  • I present a 3-D profiler specially devised for the profile measurement of specular surfaces that requires precision shape accuracy up to a few nanometer. A profile is reconstructed from the curvature of a test part of the surface at several locations along a line. The local curvature data are acquired with White-light Scanning Interferometry. Test measurement proves that the proposed profiler is well suited for the specular surface inspection like precision mirror.

  • PDF

Development of microscopic surface profile estimation algorithm through reflected laser beam analysis (레이저 반사광 분석을 통한 미세 표면 프로파일 추정 알고리즘의 개발)

  • Seo Young-Ho;Ahn Jung-Hwan;Kim Hwa-Young;Kim Sun-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.64-71
    • /
    • 2005
  • In order to measure surface roughness profile, stylus type equipments are commonly used, but the stylus keeps contact with surface and damages specimens by its tip pressure. Therefore, optics based measurement systems are developed, and light phase interferometer, which is based on light interference phenomenon, is the most noticeable research. However, light interference based measurements require translation mechanisms of nano-meter order in order to generate phase differences or multiple focusing, thus the systems cannot satisfy the industrial need of on-the-machine and in-process measurement to achieve factory automation and productive enhancement. In this research, we focused light reflectance phenomenon rather than the light interference, because reflectance based method do not need translation mechanisms. However, the method cannot direct]y measure surface roughness profile, because reflected light consists of several components and thus it cannot supply surface height information with its original form. In order to overcome the demerit, we newly proposed an image processing based algorithm, which can separate reflected light components and conduct parameterization and reconstruction process with respect to surface height information, and then confirmed the reliability of proposed algorithm by experiment.

Precision Profile Measurement of Mirror Surfaces by Phase Shifting Interferometry (광위상간섭에 의한 경면의 정밀 형상측정)

  • 김승우;공인복;민선규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1530-1535
    • /
    • 1992
  • An optical method of phase shifting interferometry is presented for the 3-dimensional profile measurement of mirror surfaces with nanometer resolution. A series of optical interferometric fringes are generated by comparing the surface to be measured with a reference flat. The fringes are captured by a CCD camera and then analyzed to obtain actual surface profile. Detailed principles are described along with necessary image processing algorithms. finally, several measurement examples are discussed which were performed on lapped surfaces, hard discs, and semiconductor wafers.

Thickness and Surface Measurement of Transparent Thin-Film Layers using White Light Scanning Interferometry Combined with Reflectometry

  • Jo, Taeyong;Kim, KwangRak;Kim, SeongRyong;Pahk, HeuiJae
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.236-243
    • /
    • 2014
  • Surface profiling and film thickness measurement play an important role for inspection. White light interferometry is widely used for engineering surfaces profiling, but its applications are limited primarily to opaque surfaces with relatively simple optical reflection behavior. The conventional bucket algorithm had given inaccurate surface profiles because of the phase error that occurs when a thin-film exists on the top of the surface. Recently, reflectometry and white light scanning interferometry were combined to measure the film thickness and surface profile. These techniques, however, have found that many local minima exist, so it is necessary to make proper initial guesses to reach the global minimum quickly. In this paper we propose combing reflectometry and white light scanning interferometry to measure the thin-film thickness and surface profile. The key idea is to divide the measurement into two states; reflectometry mode and interferometry mode to obtain the thickness and profile separately. Interferogram modeling, which considers transparent thin-film, was proposed to determine parameters such as height and thickness. With the proposed method, the ambiguity in determining the thickness and the surface has been eliminated. Standard thickness specimens were measured using the proposed method. Multi-layered film measurement results were compared with AFM measurement results. The comparison showed that surface profile and thin-film thickness can be measured successfully through the proposed method.

The measurement of the amount of wear by using least squares approximation with Fourier series (푸리에 급수와 초소 자승법을 이용한 마멸량 측정)

  • 전종하;구영필;조용주
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.300-305
    • /
    • 1998
  • A method of calculating wear amount which is based on digitally measured surface profile was suggested. The original profile of worn out profile was estimated from its adjacent surface profile by using least squares curve fitting with Fourier series. The approximated curve was well fitted to original surface profile. With this approach, more accurate calculation of the wear amount will be possible.

  • PDF

An Error Compensation in Rough Surface Measurement by Contact Stylus Profilometer (표면미세형상측정을 위한 접촉식 형상측정기의 오차 보정)

  • 조남규
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.1
    • /
    • pp.126-134
    • /
    • 1999
  • In this paper, a new error compensating technique for form-error compensation of rough-surface profile obtained by contact stylus profilometer is proposed. By the method, the real contact points of rough-surface and diamond stylus can be estimated and the measured profile data corrected. To verify the compensation effect, the properties(Ra, RMS, Kurtosis, Skewness) of measured profile data and compensated data were compared. And, the cumulative RMS slope was proposed to assess the compensated effect of upper area of profile. The results show that the measuring error could be compensated very well in amplitude parameters and in proposed cumulative RMS slope by the developed form-error compensating technique.

  • PDF

A Study of the Infrared Temperature Sensing System for Surface Temperature Measurement in Laser Welding(I) - Surface Temperature Profile According to Bead Shape - (레이저용접부 온도측정을 위한 적외선 온도측정장치의 개발에 관한 연구(I) -용융부 형상에 따른 표면온도분포-)

  • 이목영;김재웅
    • Journal of Welding and Joining
    • /
    • v.20 no.1
    • /
    • pp.62-68
    • /
    • 2002
  • This study investigated the feasibility of penetration depth measurement using infrared temperature sensing on the weld surface. The detection point was optimized by FEM analysis in the laser keyhole welding. The profile of the weld surface temperature was measured using infrared detector array. Surface temperature behind the weld pool is proportional or exponentially proportional to penetration depth and bead width. From the results, the monitoring device of surface temperature using infrared detector array was applicable fur real time penetration depth control.