• Title/Summary/Keyword: Surface profile

Search Result 1,850, Processing Time 0.035 seconds

Analysis of Archaeal Community in Autotrophic Perchlorate-degrading Enrichment Culture (독립영양 방식으로 퍼클로레이트를 분해하는 농화배양 내 고세균 군집 분석)

  • Kim, Young-Hwa;Do, Sanghyun;So, Hyunseung;Been, Junwon;Sung, Haechan;Ji, Sungchan;Son, Myunghwa;Ahn, Yeonghee
    • Journal of Life Science
    • /
    • v.27 no.4
    • /
    • pp.435-441
    • /
    • 2017
  • Perchlorate ($ClO_4^-$) is an emerging contaminant detected in soil, groundwater, and surface water. Previous study revealed bacterial community in the enrichment culture tdegraded perchlorate using elemental sulfur as an electron donor. Quantitative and qualitative molecular methods were employed in this study to investigate archaeal community in the enrichment culture. Real-time qPCR showed that archaeal 16S rRNA gene copy number in the culture was about 1.5% of bacterial 16S rRNA gene copy number. This suggested that less archaea were adapted to the environment of the enrichment culture and bacteria were dominant. DGGE banding pattern revealed that archaeal community profile of the enrichment culture was different from that of the activated sludge used as an inoculum for the enrichment culture. The most dominant DGGE band of the enrichment culture was affiliated with Methanococci. Further research is necessary to investigate metabolic role of the dominant archaeal population to better understand microbial community in the perchlorate-reducing enrichment culture.

Surface Modification of Li Metal Electrode with PDMS/GO Composite Thin Film: Controlled Growth of Li Layer and Improved Performance of Lithium Metal Battery (LMB) (PDMS/GO 복합체 박막의 리튬 금속 표면 개질: 리튬전극의 성장 제어 및 리튬금속전지(LMB) 성능 향상)

  • Lee, Sanghyun;Seok, Dohyeong;Jeong, Yohan;Sohn, Hiesang
    • Membrane Journal
    • /
    • v.30 no.1
    • /
    • pp.38-45
    • /
    • 2020
  • Although Lithium metal battery (LMB) has a very large theoretical capacity, it has a critical problem such as formation of dendrite which causes short circuit and short cycle life of the LMB. In this study, PDMS/GO composite with evenly dispersed graphene oxide (GO) nanosheets in poly (dimethylsiloxane) (PDMS) was synthesized and coated into a thin film, resulting in the effect that can physically suppress the formation of dendrite. However, PDMS has low ion conductivity, so that we attained improved ion conductivity of PDMS/GO thin film by etching technic using 5wt% hydrofluoric acid (HF), to facilitate the movement of lithium (Li) ions by forming the channel of Li ions. The morphology of the PDMS/GO thin film was observed to confirm using SEM. When the PDMS/GO thin film was utilized to lithium metal battery system, the columbic efficiency was maintained at 87.4% on average until the 100th cycles. In addition, voltage profiles indicated reduced overpotential in comparison to the electrode without thin film.

Development of Novel Method of Seismic Slope Stability Analysis (신(新) 유사정적 사면안정해석 기법 개발)

  • Yun, Seung;Park, Duhee;Lee, Seungho;Hwang, Youngchul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.1
    • /
    • pp.49-54
    • /
    • 2009
  • The seismic slope stability is most often evaluated by the pseudo-static limit analysis, in which the earthquake loading is simplified as static inertial loads acting in horizontal and/or vertical directions. The transient loading is represented by constant acceleration via the pseudostatic coefficients. The result of a pseudostatic analysis is governed by the selection of the value of the pseudostatic coefficient. However, selection of the value is very difficult and often done in an ad hoc manner without a sound physical reasoning. In addition, the maximum acceleration is commonly estimated from the design guideline, which cannot accurately estimate the dynamic response of a slope. There is a need to perform a 2D dynamic analysis to properly define the dynamic response characteristics. This paper develops a new hybrid pseudostatic method that links the modified one-dimensional seismic site response analysis and the pseudostatic algorithm. The modified site response analysis adjusts the density of the layers to simulate the change in mass and weight of the layers of the slope with depth. Multiple analyses were performed at various locations within the slope to estimate the change in seismic response of the slope. The calculated peak acceleration profiles with depth from the developed procedure were compared to those by the two-dimensional analyses. Comparisons show that the two methods result in remarkable match. The calculated profiles are used to perform pseudostatic analysis. The results show that use of peak or a fraction of acceleration at the surface can seriously underestimate or overestimate the factor of safety, and that the proposed procedure significantly enhances the reliability of a standard procedure.

  • PDF

Development of Tomographic SASW Method to Evaluate Two-Dimensional Variability of Shear Stiffness (지반 및 구조물의 이차원적 전단강성 평가를 위한 토모그래픽 SASW 기법의 개발)

  • 조성호
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.29-42
    • /
    • 1999
  • The SASW (Spectral-Analysis-of-Surface-Waves) method, which evaluates the stiffness structure of the subsurface and structures nonintrusively and nondestructively, has been successfully used in the civil engineering applications. However, the SASW method assumes that the subsurface or structures consist of horizontal multi-layers, so that the method has some difficulty in continuously evaluating the integrity of a tunnel lining and a pavement system. This difficulty prevents the SASW method from being used to generate a tomographic image of stiffness for the subsurface or structures. Recently, the GPR technique which has the advantage of continuously evaluating integrity of the subsurface and structures has been popular. This advantage of GPR technique initiated the efforts to make the SASW method, which is superior to GPR and other nondestructive testing methods due to its capability of evaluating stiffness and modulus, be able to do continuous evaluation of stiffness structure, and the efforts finally lead to the development of \ulcornerTomographic SASW Technique.\ulcorner Tomographic SASW technique is a variation of the SASW method, and can generate a tomographic image of stiffness structure along the measurement line. The tomographic SASW technique was applied to the investigation of lateral variability of a sand box placed by the raining method for the purpose of verifying its effectiveness. Tomographic SASW measurements on the sand box revealed that the investigated sand box has different shear stiffness along the measurement line, which gave a clue of how to make a better raining device.

  • PDF

Schottky barrier overlapping in short channel SB-MOSFETs (Short Channel SB-FETs의 Schottky 장벽 Overlapping)

  • Choi, Chang-Yong;Cho, Won-Ju;Chung, Hong-Bay;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.133-133
    • /
    • 2008
  • Recently, as the down-scailing of field-effect transistor devices continues, Schottky-barrier field-effect transistors (SB-FETs) have attracted much attention as an alternative to conventional MOSFETs. SB-FETs have advantages over conventional devices, such as low parasitic source/drain resistance due to their metallic characteristics, low temperature processing for source/drain formation and physical scalability to the sub-10nm regime. The good scalability of SB-FETs is due to their metallic characteristics of source/drain, which leads to the low resistance and the atomically abrupt junctions at metal (silicide)-silicon interface. Nevertheless, some reports show that SB-FETs suffer from short channel effect (SCE) that would cause severe problems in the sub 20nm regime.[Ouyang et al. IEEE Trans. Electron Devices 53, 8, 1732 (2007)] Because source/drain barriers induce a depletion region, it is possible that the barriers are overlapped in short channel SB-FETs. In order to analyze the SCE of SB-FETs, we carried out systematic studies on the Schottky barrier overlapping in short channel SB-FETs using a SILVACO ATLAS numerical simulator. We have investigated the variation of surface channel band profiles depending on the doping, barrier height and the effective channel length using 2D simulation. Because the source/drain depletion regions start to be overlapped each other in the condition of the $L_{ch}$~80nm with $N_D{\sim}1\times10^{18}cm^{-3}$ and $\phi_{Bn}$ $\approx$ 0.6eV, the band profile varies as the decrease of effective channel length $L_{ch}$. With the $L_{ch}$~80nm as a starting point, the built-in potential of source/drain schottky contacts gradually decreases as the decrease of $L_{ch}$, then the conduction and valence band edges are consequently flattened at $L_{ch}$~5nm. These results may allow us to understand the performance related interdependent parameters in nanoscale SB-FETs such as channel length, the barrier height and channel doping.

  • PDF

A study on Monitoring the Inner Structure of Dam Body Using High Resolution Seismic Reflection Method (고분해능 탄성파 반사법을 이용한 댐체 내부구조 모니터링 연구)

  • Kim, Jung-Yul;Kim, Hyoung-Soo;Oh, Seok-Hoon;Kim, Yoo-Sung
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • Defects of dam body which can be induced in seepage or leakage procedure can directly affect dam safety. Therefore, a proper inspection method should be carried out in the first place to find out their positions and sizes. After that, some reinforcement works such as grouting and the corresponding assessment could be taken in a proper way. The dam(center core type earth dam) issued in this study has been in need for intensive diagnosis and reinforcement work, because a lot of slumps similar to cracks, seepage and some boggy area have been observed on the downstream slope. High resolution seismic reflection method was performed on the crest profile twice before and after grouting work(Aug. 2001 and Nov. 2004) aimed at the dam inspection and the assessment of grouting efficiency as well. To enhance the data resolution, P-beam energy radiation technique which can reduce the surface waves and hence to reinforce the reflection events was used. Strong reflection events were recognized in the stack section before grouting work, It seems that the events would be caused by e.g. horizontal cracks with a considerable aperture. Meanwhile such strong reflection events were not observed in the section after grouting. That is, the grouting work was dear able to reinforce the defects of dam body. Hence, the section showed an well arranged picture of dam inner structure. In this sense, seismic reflection method will be a desirable technique for dam inspection and for monitoring dam inner structure as well.

  • PDF

Two-dimensional Analysis of MT Data across Northern Victoria, Australia (호주 북부 Victoria주 MT 탐사 자료의 2차원 해석)

  • Lee, Seong-Kon;Lee, Tae-Jong;Uchida, Toshihiro;Park, In-Hwa;Song, Yoon-Ho;Cull, Jim
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.4
    • /
    • pp.407-415
    • /
    • 2010
  • MT soundings were carried out in 2008, in northern Victoria, Australia, as a continuing collaboration research of 2007 between Republic of Korea, Australia, and Japan. The main purpose of this research is to investigate electrical conductivity structure and thus help understanding of tectonic structure in central Victoria, which is believed to be closely linked to mineralization and magmatic processes of this region. The survey area is located in western Lachlan Fold Belts, which is the part of Tasman Fold Belts in southeastern Australia. An MT profile of 2008 is almost parallel to the one of 2007 and approximately 50 km away. The 2D inversion result of MT data also shows that the position of conductivity discontinuity near surface are well matched with the positions of major faults, such as Avoca Fault, which is the structural boundary between Stawell and Bendigo Zones, and Heathcote Fault Zone, which marks the boundary between Bendigo and Melbourne Zones. It is also confirmed from resistivity image that internal faults in Bendigo Zone are in listric form, which is implied to be formed by structural shortening during compressional orogenic activity in Silurian.

Comparison of Methods Predicting VS30 from Shallow VS Profiles and Suggestion of Optimized Coefficients (얕은 심도 VS주상도를 활용한 VS30 예측 방법론 비교 및 최적 계수 제시)

  • Choi, Inhyeok;Kwak, Dongyoup
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.3
    • /
    • pp.15-23
    • /
    • 2020
  • Ground motion models predicting intensity measures on surface use a time-averaged shear wave velocity, VS30, as a key variable simulating site effect. The VS30 can be directly estimated from VS profiles if the profile depth (z) is greater than or equal to 30 m. However, some sites have VS profiles with z < 30 m. In this case VS30 can be predicted using extension models. This study proposes new coefficient sets for existing prediction equations using 297 Korea VS profiles. We have collected VS profiles from KMA and Geoinfo database. Fitting six existing methods to data, we suggest new coefficients for each method and evaluate their performance. It turns out that if z ≥ 15 m, the standard deviation (σ) of residual in log10 is 0.061, which indicates that the estimated VS30 is nearly accurate. If z < 15 m, the σ keeps increasing up to 0.1 for z = 5 m, so we caution the use of models at very low z. Nonetheless, we recommend investigating up to 30 m depth for VS30 calculation if possible.

Typical Seismic Intensity Calculation for Each Region Using Site Response Analysis (부지응답해석을 이용한 지역별 대표 진도 산출 연구)

  • Ahn, Jae-Kwang;Son, Su-Won
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.1
    • /
    • pp.5-12
    • /
    • 2020
  • Vibration propagated from seismic sources has damping according to distance and amplification and reduction characteristic in different regions according to topography and geological structure. The vibration propagated from the seismic source to the bedrock is largely affected by the damping according to the separation distance, which can be simply estimated through the damping equation. However, it is important to grasp geological information by location because vibration estimation transmitted to the surface are affected by the natural period of the soil located above the bedrock. Geotechnical investigation data are needed to estimate the seismic intensity based on geological information. If there is no Vs profile, the standard penetration tests are mainly used to determine the soil parameters. The Integrated DB Center of National Geotechnical Information manages the geotechnical survey data performed on the domestic ground, and there is the standard penetration test information of 400,000 holes. In this study, the possibility of quantitation the amplification coefficient for each region was examined to calculated the physical interactive seismic intensity based on geotechnical information. At this time, the shear wave column diagram was generated from the SPT-N value and ground response analysis was performed in the target area. The site coefficients for each zone and the seismic intensity distribution for the seismic motion present a significant difference according to the analysis method and the regional setting.

Prediction of Transmission Error Using Dynamic Analysis of a Helical Gear (헬리컬기어의 동적해석을 통한 전달오차 예측)

  • Lee, Jeongseok;Yoon, Moonyoung;Boo, Kwangsuk;Kim, Heungseob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.12
    • /
    • pp.1005-1011
    • /
    • 2016
  • The fundamental reason for gear noise is transmission error. Transmission error occurs because of STE (static transmission error) and DTE (dynamic transmission error), while a pair of gears is meshing. These errors are generated by the deflection of the teeth and the friction on the surface of the teeth. In addition, the vibration generated by transmission error leads to excited bearings. The bearings support the shafts, and the noise is radiated after exciting the gear casing. The analysis of the contact stress in helical gear tooth flanks indicates that it is due to impact loading, such as the sudden engagement and disengagement of a gear. Stress analysis is performed for different roll positions, in order to determine the most critical roll angle. Dynamic analysis is performed on this critical roll position, in order to evaluate variation in stresses and tooth contact force, with respect to time. In this study, transmission error analysis was implemented on a spur and helical gear with involute geometry and a modified geometry profile. In addition, in order to evaluate the intensity of impact due to sudden engagement and significant backlash, the impact factor was calculated using the finite element analysis results of static and dynamic maximum bending stresses.