• 제목/요약/키워드: Surface polishing

검색결과 893건 처리시간 0.027초

AE신호 분석을 통한 비자성체의 자기연마 모니터링에 관한 연구 (A Study on Monitoring of the MAP for Non-magnetic Material by AE Signal Analysis)

  • 이성호;김상오;곽재섭
    • 한국생산제조학회지
    • /
    • 제20권3호
    • /
    • pp.304-309
    • /
    • 2011
  • A monitoring system for magnetic abrasive polishing process is necessary to ensure the polishing products the high quality and integrity. Acoustic emission (AE) signal is known to reflect the material removal phenomena in other machining processes. In a case of the magnetic abrasive polishing of non-magnetic materials, application of AE method is very difficult because of lower machining force on the surface of workpiece and the level of AE signal is extremely lower. In this study, AE sensor-based monitoring system is applied to the magnetic abrasive polishing. The relation between the level of the AE RMS and the surface roughness during the magnetic abrasive polishing of magnesium alloy steel is investigated.

에어백 공구에 의한 비구면 유리 렌즈 금형의 전면 접촉 연마 (Full Contact Polishing Method of Aspherical Glass Lens Mold by Airbag Polishing Tool)

  • 이호철;김중억
    • 한국공작기계학회논문집
    • /
    • 제17권5호
    • /
    • pp.82-88
    • /
    • 2008
  • Conventional aspherical lens polishing methods by the small tool polishing use aspherical profile and the trajectory of the polishing tool is also controlled. In this paper, new full contact polishing mechanism is suggested to polish aspherical glass lens mold by both airbag polishing tool and eccentric motion. Full contact concept by airbag polishing tool and no position control make the easy polishing setup and do not need aspherical design profile. An aspherical lens polishing machine was made for this study and a verification experiment was performed for surface roughness improvements.

Development of Ultral Clean Machining Technology with Electrolytic Polishing Process

  • Lee, Eun-Sang;Park, Jeong--Woo;Moon, Young-Hun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권1호
    • /
    • pp.18-25
    • /
    • 2001
  • Electrolytic polishing is the anodic dissolution process in the transpassive state. It removes non-metallic inclusion and improves mechanical and corrosion resistance of stainless steel. If there is a Bailby layer, it will be removed and the true structure of the surface will be restored. Electrolytic polishing is normally used to remove a very thin layer of material from the surface of metal object. A new electrolyte composed of phosphoric, sulfuric and distilled water has been developed in this study. Two current density, high & low current density regions, have been applied in this study. In this study, In the region of high current density, there is no plateau region but excellent electrolytic polishing effect can be accomplished in short machining time because material removel process and leveling process occur simultaneously. In the low current density region, there can be found plateau region. The material removal process and leveling process occur successively. The aim of this work is to determine electrolytic polishing for stainless steel in terms of high & low current density and workpiece surface roughness.

  • PDF

최적조건 선정을 위한 Pad 특성과 Wafer Final Polishing의 가공표면에 관한 연구 (The Study on the Wafer Surface and Pad Characteristic for Optimal Condition in Wafer Final Polishing)

  • 원종구;이은상;이상균
    • 한국기계가공학회지
    • /
    • 제11권1호
    • /
    • pp.26-32
    • /
    • 2012
  • Polishing is one of the important methods in manufacturing of Si wafers and in thinning of completed device wafers. This study will report the characteristic of wafer according to processing time, machining speed and pressure which have major influence on the abrasion of Si wafer polishing. It is possible to evaluation of wafer abrasion by load cell and infrared temperature sensor. The characteristic of wafer surface according to processing condition is selected to use a result data that measure a pressure, machining speed, and the processing time. This result is appeared by the characteristic of wafer surface in machining condition. Through that, the study cans evaluation a wafer characteristic in variable machining condition. It is important to obtain optimal condition. Thus the optimum condition selection of ultra precision Si wafer polishing using load cell and infrared temperature sensor. To evaluate each machining factor, use a data through each sensor. That evaluation of abrasion according to variety condition is selected to use a result data that measure a pressure, machining speed, and the processing time. And optimum condition is selected by this result.

Nano-precision Polishing of CVD SiC Using MCF (Magnetic Compound Fluid) Slurry

  • Wu, Yongbo;Wang, Youliang;Fujimoto, Masakazu;Nomura, Mitsuyoshi
    • 한국생산제조학회지
    • /
    • 제23권6호
    • /
    • pp.547-554
    • /
    • 2014
  • CVD SiC is a perfect material used for molds/dies in hot press molding of glass lens. In its fabrication process, nano-precision polishing is essential finally. For this purpose, a novel polishing method using MCF (Magnetic Compound Fluid) slurry is proposed. In this method, MCF slurry is supplied into a given gap between the workpiece and a MCF slurry carrier, and constrained within the polishing zone by magnetic forces from permanent magnet. In this paper, after an experimental rig used to actually realize the proposed method has been constructed, the fundamental polishing characteristics of CVD SiC such as the effects of process parameters including MCF slurry composition on work-surface roughness were experimentally investigated. As a result, nano-precision surface finish of CVD SiC was successfully attained with MCF slurry and the optimum process parameters for obtaining the smoothest work-surface were determined.

치과용 바렐연마의 시간에 따른 가공도 및 연마도 관찰 (Observation of machining and polishing according to the dental barrel polishing time)

  • 고현정;최성민
    • 대한치과기공학회지
    • /
    • 제45권4호
    • /
    • pp.87-94
    • /
    • 2023
  • Purpose: This study aimed to observed changes in the shape of dental barrels based on application time. Machinability measures the angle of alloy specimens. Polishing performance measures the surface roughness of alloy specimens. Methods: The dental barrel polishing equipment used in this study was a Snow Barrel (DK Mungyo). Three types of cobalt-chromium alloys for partial dentures were used as specimens (BC CAST R [BP]; Bukwang, Vera PDI [VP]; Aalbadent, and GM 800+ [GP]; Dentaurum). Specimens were prepared in the form of plates (10 mmx10 mmx2 mm). Dental barrel polishing was performed at 450 rpm for 60 minutes with intervals of 5 minutes. The processing angle was measured using a microscope (SZ61; Olympus). Results: For the angle measurement, the VPC specimen was measured at 78.64°, 36.00° for the VP60 specimen, 79.57° for the BP control (BPC) specimen, 28.07° for the BP60 specimen, 75.01° for the GPC specimen, and 39.92° for the GP60 specimen. For the surface roughness measurements, the average surface roughness of the VPC and VP15 specimens were 1.09 ㎛ and 0.26 ㎛, respectively. The average surface roughness of the BPC and BP20 specimens were 1.77 ㎛ and 0.29 ㎛, respectively. The average surface roughness of the GPC and GP15 specimens were 1.08 ㎛ and 0.27 ㎛. Conclusion: The results were excellent after about 20 minutes of dental barrel polishing conditions presented in this study.

패드 마모 균일성 향상을 위한 CMP 컨디셔닝 시스템 설계 변수 연구 (Design Variables of Chemical-Mechanical Polishing Conditioning System to Improve Pad Wear Uniformity)

  • 박병훈;박범영;전언찬;이현섭
    • Tribology and Lubricants
    • /
    • 제38권1호
    • /
    • pp.1-7
    • /
    • 2022
  • Chemical-mechanical polishing (CMP) process is a semiconductor process that planarizes a wafer surface using mechanical friction between a polishing pad and a substrate surface during a specific chemical reaction. During the CMP process, polishing pad conditioning is applied to prevent the rapid degradation of the polishing quality caused by polishing pad glazing through repeated material removal processes. However, during the conditioning process, uneven wear on the polishing pad is inevitable because the disk on which diamond particles are electrodeposited is used. Therefore, the abrasion of the polishing pad should be considered not only for the variables during the conditioning process but also when designing the CMP conditioning system. In this study, three design variables of the conditioning system were analyzed, and the effect on the pad wear profile during conditioning was investigated. The three design variables considered in this study were the length of the conditioner arm, diameter of the conditioner disk, and distance between centers. The Taguchi method was used for the experimental design. The effect of the three design variables on pad wear and uniformity was assessed, and new variables used in conditioning system design were proposed.

Glass Ionomer Cement 수복물(修復物)의 표면거칠기에 관한 실험적 연구 (EXPERIMENTAL STUDIES ON THE SURFACE ROUGHNESS OF GLASS IONOMER CEMENT RESTORATIONS)

  • 김광순;이승종;이정석
    • Restorative Dentistry and Endodontics
    • /
    • 제17권1호
    • /
    • pp.166-180
    • /
    • 1992
  • One disadvantage of Glass Ionomer Cement Restoration is the difficulty in polishing. To find the appropriate polishing method, we polished the surface of Glass Ionomer Cement Restorations by 11 combination methods serially using disks shared with large-small particles and evaluated the polishing process in terms of surface roughness, surface roughness curve, and SEM findings. In addition, a visible light curing type bonding material was applied to evaluate the possible improvement in surface properties. The following results were obtained. 1. The disk surface of Glass Ionomer Cement was polished serially by disks with superfine particles, but it didn't become smooth. 2. The surface of Microfilled Composite resin became smoother as using a disk with finer particles. 3. When a visible light curing type bonding material was applied in finishing process, the surface of Glass Ionomer Cement became smooth as much as the applied matrix.

  • PDF

금합금 연마재 종류에 따른 금합금 소실량과 연마 정도 (THE AMOUT OF LOSS AND THE DEGREE OF SURFACE SMOOTHNESS OF GOLD ALLOY BY GOLD ALLOY POLISHING RUBBER POINT MATERIALS)

  • 김명화;임순호;정문규
    • 대한치과보철학회지
    • /
    • 제35권2호
    • /
    • pp.277-295
    • /
    • 1997
  • After clinical adjustment of dental casting restoration, re-polishing procedure is recommanded because the smooth gold sureface is lost. But there is the possibility to get more loose contact than that intended by loss of gold alloy according to the kinds of polishing materials and polishing time. Therefore in this study I polished type II gold alloy with 390gm force, 20,000rpm speed, and 8 kinds of gold alloy polishing materials, fabricated by 4 companies and then measured the amount of loss of gold alloy with Surfcorder SEF-30D and observed alloy surfaces polished by 3 brown rubber points with SEM. The amount of loss of gold alloys polished with 8 kinds of polishing materials and the degree of smoothness of gold alloys according to polishing time and polishing materials were compared. The following results were obtained : 1. When the amount of loss of gold alloys polished with 3 kinds of brown rubber point was compared, Alphalex brown point had the most amount of alloy loss, followed in decreasing order by Shofu brown point and Eveflex brown point. There was statistically significant difference in the amount of alloy loss according to polishing materials. 2. When the amount of loss of gold alloys polished with 5 kinds of green rubber point was compared, Shofu green point had the most amount of alloy loss, followed in decreasing order by Alphaflex green point, Dedeco green clasp polisher, and Eveflex green point. There was statistically significant difference in the amount of alloy loss according to polishing materials except Alphaflex green point and Dedeco green clasp polisher. 3. When the amount of loss of gold alloys polished with all kinds of rubber point was compared, there was no significant difference in Eveflex brown point, Alphaflex green point, and Dedeco green clasp polisher. 4. When average amount of alloy loss per 1 revolution by polishing materials was compared, Alphalex brown point had the greatest value as $0.329{\mu}m$ and Shofu supergreen point had the lowest value as $0.022{\mu}m$. 5. When the degree of sureface smoothness of gold alloy polished with 3 kinds of brown rubber point was compared, In Alphalex brown point surface roughness was completely lost after 20 seconds polishing time, in Shofu brown point 30 seconds, in Eveflex brown point 40 seconds. But in every gold alloys fine scratch formed by rubber points was observed. Based on the results of this study, as rubber polishing materials used in polishing of dental casting restoration after clinical adjustment influenced on the tightness of occlusal or proximal contact, we should make dental casting restoration with minimum error through careful laboratory procedure and form very smooth surface of restoration with tripoli and rouge after use of silicone polishing materials.

  • PDF