• Title/Summary/Keyword: Surface plate

Search Result 2,501, Processing Time 0.031 seconds

Wave Diffractions by Submerged Flat Plate in oblique Waves (경사파중 수중평판에 의한 파랑변형)

  • Cho, I.H.;Kim, H.J.
    • Journal of Korean Port Research
    • /
    • v.10 no.1
    • /
    • pp.53-61
    • /
    • 1996
  • This paper describes the effect of wave control using submerged flat plate by the numerical calculation and the hydraulic model test. The boundary element method is used to develop a numerical solution for the flow field caused by monochromatic oblique waves incident upon an infinitely long, sumerged flat plate situated in arbitrary water depth. The effect of wave blocking is examined according to the change of length, submerged depth of flat plate and incident angles. Numerical results show that longer length, shallower submergence of flat plate and larger incident angles enhance the effect of wave blocking. To validate numerical analysis method, hydraulic model test was conducted in 2-D wave flume with 60 cm metal sheet. Reflected waves are extracted from water surface elevation in front of the location of a submerged plate by least square method with 3 wave gages. From comparing experimental results with numerical results, efficiency of numerical analysis method by this study could be confirmed well within wide ranges of wave frequencies.

  • PDF

The Optimization of RF Atmospheric Pressure Plasma Treatment Process for Improving the Surface Free Energy of Polymethylmethacrylate (PMMA) (Polymethylmethacrylate (PMMA) 표면개질을 위한 RF 대기압 플라즈마 처리공정의 최적화)

  • Nam, Ki-Chun;Myung, Sung-Woon;Choi, Ho-Suk
    • Journal of Adhesion and Interface
    • /
    • v.6 no.3
    • /
    • pp.1-9
    • /
    • 2005
  • This study investigated the influence of atmospheric plasma factors such as RF power, treatment time, the gap distance between discharge and sample, and the gas flow rate of Ar on the surface property by using the design of experiment (DOE) method. The plasma treatment time (s), plasma power (W), gap distance (mm) between discharge and sample, and flow rate of Ar gas were in order of important factors for changing the surface free energy of PMMA plates. As a result, the most effective factor for improving the surface free energy of PMMA plates is the distance (mm) from discharge glow to sample plate. Because of the interaction between plasma power (W) and treatment time (s), the power dose (J) factor which multiply plasma power (W) by treatment time (s) should be significantly considered. The optimum condition for maximizing the surface free energy of PMMA plate was found at 1500J of power dose. Through XPS and AFM analysis, we also observed the change of chemical composition, surface morphology and roughness before and after plasma treatment. It is considered that the change of surface free energy of PMMA plate with plasma treatment is influenced by the introduction of polar functional group as well as the increase of surface roughness.

  • PDF

Development of Surface Coating Technology for Metallic Bipolar Hate in PEMFC : II. Study on the PEMEC Performance of Coated Metallic Bipolar Plate (PEMFC용 금속분리판 코팅 기술 개발 : II. 코팅 금속분리판 연료전지 성능 특성 연구)

  • Yun, Yong-Sik;Chung, Kyeong-Woo;Yang, Yoo-Chang;Ahn, Seung-Gyun;Jeon, Yoo-Taek;Na, Sang-Mook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.352-355
    • /
    • 2006
  • As the stainless steel has good corrosion resistance, mechanical property and ease of manufacture, it has been studied as the candidate material of metallic bipolar plate for automotive PIMFC. But, metal is dissolved under fuel cell operating conditions Dissolved ions contaminate a membrane electrode assembly (MEA) and, decrease the fuel cell performance. In addition, metal oxide formation on the surface of stainless steel increases the contact resistance in the fuel cell. These problems have been acted as an obstacle in the application of stainless steel to bipolar plate. Therefore, many kinds of coating technologies have been examined in order to solve these problems. In this study, stainless steel was coated in order to achieve high conductivity and corrosion resistance by several methods. Contact resistance was measured by using a tensile tester and impedance analyzer Corrosion characteristics of coated stainless steel were examined by Tafel-extrapolation method from the polarization curves in a solution simulating the anodic and cathodic environment of PEMFC. Fuel cell performance was also evaluated by single cell test. We tested various coated metal bipolar plate and conventional and graphite were also tested as comparative samples. In the result, coated stainless steel bipolar plate exhibited better cell performance than graphite to bipolar plate.

  • PDF

Mixed Convection Heat Transfer from Two Vertical Parallel Plates with Different Conditions (조건이 다른 수직 평형 평판에서 혼합대류 열전달)

  • Kim, S.Y.;Chung, H.S.;Kwon, S.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.4
    • /
    • pp.243-252
    • /
    • 1992
  • A mixed convection heat transfer from two vertical parallel plates has been studied numerically by the finite difference method. Effects of the Grashof number, the relative length, $L_2/L_1$. the dimensionless temperature ratio, ${\Phi}_2/{\Phi}_1$ and the dimensionless plate spacing, $b/L_1$ are examined for the heat transfer. Independent of the Grashof numbers and $L_2/L_1$, the dimensionless vertical velocity distributions skewed on the left plate as ${\Phi}_2/{\Phi}_1$ decreased. The dimensionless vertical velocity distribution for $Gr/Re^2=1$ and ${\Phi}_2/{\Phi}_1=1.0$ is skewed to the right plate $L_2/L_1=0.5$, symmetric at $L_2/L_1=1.0$ and skewed to the left plate at $L_2/L_1=1.5$. But for $Gr/Re_2=10.0$ and ${\Phi}_2/{\Phi}_1=1.0$ reversed velocity patterns are obtained. Regardless of the Grashof numbers and $L_2/L_1$, the mean Nusselt nembers on the inside surface of the left plate decreases and those of the right inside surface increases as ${\Phi}_2/{\Phi}_1$ increases. Temperature, velocity and mean Nusselt number distributions are apparently not affected by $L_2/L_1$.

  • PDF

Development of New Fiber Reinforced Campsite Materials by Reactive Plasma Surface Treatmnt - (I) Improving the Wettability on the Glass Plate by Plasma Surface Treatment - (반응성 플라즈마 표면처리 기법을 도입한 새로운 유리섬유강화 복합재료의 개발 및 물성연구 - (I) Plasma처리에 의한 평판유리표면의 젖음성 개선에 관한 연구 -)

  • Song, I Y.;Byun, S.M.;Kim, S.T.;Cho, J.S.;Kim, G.S.;Park, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.581-583
    • /
    • 1993
  • One of the principal problems encountered in the use of fiber reinforced composites is to establish an active fiber surface to achieve maximum adhesion between resin and fiber surface. In order to improve the interface bonding, the surface of glass fiber should be treated with silane coupling agent in ordinary composite manufacturing processes. However, the price of the coupling agent is very high and in the treating process voids are formed, which decreasees electrical and mechanical strength. We want to develope new process that will overcome the disadvantage of the coupling agent and achieve maximum adhesion at the interface between resin and fiber by active plasma treatment on the glass fiber surface. In this study, we investigate the improvement of contact angle on the glass plate surface as the first step in developing new GFRP.

  • PDF

presumption of Earth Resistance by Water Tank Model (수조모델 실험에 의한 접지저항 추정)

  • 고희석;최종규;김주찬;이충식
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.125-131
    • /
    • 2002
  • It is very important to assume potential distribution to be generated in electrode environs and grounding resistance by current beforehand, when incoming at grounding electrode to plan efficient grounding facilities In this paper, we analyzed grounding resistance through a simulation experiment by a water tank scaled model electrode of the rectangular earth plate, a theoretical Calculation result of the rectangular earth plate and measurement of grounding resistance buried rectangular earth plate analysing earth surface potential.

  • PDF

Dynamically equivalent element for an emboss embeded in a plate (평판의 국부적인 기하학적 변형을 모사하는 등가 요소 생성)

  • Song, Kyung-Ho;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.335.1-335
    • /
    • 2002
  • Among many structural dynamics modification methods for plate and shell vibration problems, embedding an emboss to the surface is very efficient. But deciding an optimal position and shape using optimization algorithm needs defining geometry and remeshing the model for every iteration step to implement the method, which takes much numerical cost. (omitted)

  • PDF

Solution of Poisson Equation using Isogeometric Formulation

  • Lee, Sang-Jin
    • Architectural research
    • /
    • v.13 no.1
    • /
    • pp.17-24
    • /
    • 2011
  • Isogeometric solution of Poisson equation is provided. NURBS (NonUniform B-spline Surface) is introduced to express both geometry of structure and unknown field of governing equation. The terms of stiffness matrix and load vector are consistently derived with very accurate geometric definition. The validity of the isogeometric formulation is demonstrated by using two numerical examples such as square plate and L-shape plate. From numerical results, the present solutions have a good agreement with analytical and finite element (FE) solutions with the use of a few cells in isogeometric analysis.