• 제목/요약/키워드: Surface patterns

검색결과 2,335건 처리시간 0.033초

핀-관 열교환기에서의 핀의 물 접촉각이 응축잔수량에 미치는 영향 (The Effect of Water Contact Angles of the Fin Surfaces of the Fin-and-Tube Heat Exchangers on the Water Hold-up)

  • 신종민;이남교;한성주;하삼철
    • 설비공학논문집
    • /
    • 제13권6호
    • /
    • pp.490-496
    • /
    • 2001
  • An experimental study on the behavior of the water hold-up by condensation of a fin-and-tube heat exchanger with regard to the surface characteristics, i.e., contact angle, was conducted. The static and dynamic contact angles were measured, and condensation experiments were conducted. Flow patterns on the fins with different surface characteristics were visualized. Results showed that the static contact angle is proportional to the dynamic contact angle within the range of this study. The water hold-up of the heat exchanger increases as the static or dynamic contact angle of its surfaces increases. Existence of transition of flow patterns was found as the static or dynamic angle increase. Due to the transition in the flow patterns, changes in the gradient of the water hold-up is occurred around the static angle of 8$0^{\circ}C$.

  • PDF

Wettability control in C-SiOx film formed by plasma polymerization of HMDSO/$O_2$ mixture

  • Kim, Seong-Jin;Lee, Kwang-Ryeol;Moon, Myoung-Woon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.328-328
    • /
    • 2011
  • Wetting phenomena have been heavily studied for industrial and academic researches especially tuning the wettability between hydrophilicity and hydrophobicity. Wicking through the surface texture is shown on superhydrophilic surface while rolling (or dewetting) on the patterns of superhydrophobic surface. These wetting phenomena are known to be affected by surface wettability determined with physical surface patterns as well as chemical composition of surface layer. In this research, we introduce a method to control the wettability of a thin C-SiOx film from hydrophobic to hydrophilic using a mixture gas of HMDSO/$O_2$ by plasma polymerization with rf-CVD (radio frequency-Chemical Vapor Deposition). Wettability was finely controlled by changing the ratio of HMDSO/$O_2$. Hydrophilicity increased as the ratio decreased, while hydrophobicity was enhanced by the ratio. Moreover, fine control from superhydrophilicity to superhydrophobicity was achieved by C-SiOx coating on the Si wafer with prepatterns of submicron-sized pillar array formed by $CF_4$ plasma etching.

  • PDF

Controlled Formation of Surface Wrinkles and Folds on Poly (dimethylsiloxane) Substrates Using Plasma Modification Techniques

  • Nagashima, So;Hasebe, Terumitsu;Hotta, Atsushi;Suzuki, Tetsuya;Lee, Kwang-Ryeol;Moon, Myoung-Woon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.223-223
    • /
    • 2012
  • Surface engineering plays a significant role in fabricating highly functionalized materials applicable to industrial and biomedical fields. Surface wrinkles and folds formed by ion beam or plasma treatment are buckling-induced patterns and controlled formation of those patterns has recently gained considerable attention as a way of creating well-defined surface topographies for a wide range of applications. Surface wrinkles and folds can be observed when a stiff thin layer attached to a compliant substrate undergoes compression and plasma treatment is one of the techniques that can form stiff thin layers on compliant polymeric substrates, such as poly (dimethylsiloxane) (PDMS). Here, we report two effective methods using plasma modification techniques for controlling the formation of surface wrinkles and folds on flat or patterned PDMS substrates. First, we show a method of creating wrinkled diamond-like carbon (DLC) film on grooved PDMS substrates. Grooved PDMS substrates fabricated by a molding method using a grooved master prepared by photolithography and a dry etching process were treated with argon plasma and subsequently coated with DLC film, which resulted in the formation of wrinkled DLC film aligning perpendicular to the steps of the pre-patterned ridges. The wavelength and the amplitude of the wrinkled DLC film exhibited variation in the submicron- to micron-scale range according to the duration of argon plasma pre-treatment. Second, we present a method for controlled formation of folds on flat PDMS substrates treated with oxygen plasma under large compressive strains. Flat PDMS substrates were strained uniaxially and then treated with oxygen plasma, resulting in the formation of surface wrinkles at smaller strain levels, which evolved into surface folds at larger strain levels. Our results demonstrate that we can control the formation and evolution of surface folds simply by controlling the pre-strain applied to the substrates and/or the duration of oxygen plasma treatment.

  • PDF

치과용 지르코니아 표면처리방법에 따른 지르코니아와 전장용 도재의 결합강도 관찰 (Shear Bond Strength of Zirconia and Ceramics according to Dental Zirconia Surface Treatment)

  • 이광영;최성민
    • 대한치과기공학회지
    • /
    • 제41권4호
    • /
    • pp.279-285
    • /
    • 2019
  • Purpose: The dental CAD / CAM system has been popular with the development of the digital dental industry. Zirconia is a typical material in dental CAD / CAM systems. Zirconia crowns are classified into single layer and double layer. This study is about the double layer crown of zirconia. The surface roughness, bond strength and fracture patterns of the zirconia surface were observed. Methods: Zirconia blocks were cut using a low speed cutter. Sintered to form a plate shape (6mm × 6mm × 3mm). The prepared specimens were surface treated in four ways. Surface roughness and bond strength were measured. And the fracture pattern was observed. Results: Result of surface treatment of zirconia. The surface roughness test results were as ET 2.87 ㎛, ST 2.67 ㎛, LT 2.44 ㎛, AT 2.41 ㎛, CN 2.08 ㎛ order. Bond Strength results were as LT 25.09 MPa, AT 23.27 MPa, ST 21.27 MPa, ET 21.09 MPa, CN 16.12 MPa order. Fracture patterns showed cohesive failure of 25-50% of the bond area. Conclusion: Surface roughness, bond strength and fracture pattern of the zirconia surface were observed. Etching the surface treatment of zirconia materials has been shown to affect the surface roughness. Zirconia special binder treatment has been shown to affect the bond strength improvement.

프리즘 패턴의 기계적 절삭 가공 (Mechanical Machining of Prism Pattern)

  • 유영은;홍성민;제태진;최두선
    • 소성∙가공
    • /
    • 제15권1호
    • /
    • pp.71-75
    • /
    • 2006
  • In recent, various shapes of pattern in micron or nano scale are adapted in many applications due to their good mechanical or optical properties. Light guide panel (LGP) of the LCD is one of important applications for micro pattern and micro prism shape is one of the typical patterns. The size of the surface patterns in most applications is decreasing to the order of micron or even under micron. On the other hand, the area to be patterned keeps enlarging. These two trends in patterned products require tooling micro patterns on large surface, which has still many technical problems to be solved mainly due to pattern size and the tooling area. In this study, we fabricated prism shape of patterns using diamond cutting tool on some metal core and plastic core like PMMA. Some cutting conditions were investigated including cutting force, cutting depth and speed for different core materials.

Investigation of the Finite Planar Frequency Selective Surface with Defect Patterns

  • Hong, Ic-Pyo
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권4호
    • /
    • pp.1360-1364
    • /
    • 2014
  • In this paper, RCS characteristics on defect pattern of crossed dipole slot FSS having a finite size have been analyzed. To analyze RCS, we applied the electric field integral equation analysis which applies BiCGSTab algorithm with iterative method and uses RWG basis function. To verify the validity of this paper, RCS of PEC sphere has been compared to the theoretical results and FSSs with defect patterns are fabricated and measured. As defect patterns in FSS, missing one column, missing some elements, and discontinuity in surfaces are simulated and compared with the measurement results. Resonant frequency shifts in pass band and changes in bandwidth are observed. From the results, precisely predicting and designing frequency characteristics over defect patterns are essential when applying FSS structures such as FSS radomes.

프리즘 패턴의 기계적 절삭 가공 (Mechanical Machining of Prism pattern)

  • 유영은;홍성민;제태진;최두선
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 금형가공,미세가공,플라스틱가공 공동 심포지엄
    • /
    • pp.110-113
    • /
    • 2005
  • In recent, various shapes of pattern in micron or nano scale are adapted in many applications due to their good mechanical or optical properties. Light guide panel (LGP) of the LCD is one of important applications for micro pattern and micro prism shape is one of the typical patterns. Many applications have the patterns on their surface and the size of the pattern keep decreasing down to the order of micron or even under micron. On the other hand, the area to be patterned keeps enlarging. These two trends in patterned products require tooling micro patterns on large surface, which has still many technical problems to be solved mainly due to pattern size and the tooling area. In this study, we fabricate prism shape of patterns using diamond cutting tool on some metal core and plastic core like PMMA Some of cutting conditions are investigated including cutting force, cutting depth and speed for different core materials.

  • PDF

Characterization of Inkjet-Printed Silver Patterns for Application to Printed Circuit Board (PCB)

  • Shin, Kwon-Yong;Lee, Minsu;Kang, Heuiseok;Kang, Kyungtae;Hwang, Jun Young;Kim, Jung-Mu;Lee, Sang-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권3호
    • /
    • pp.603-609
    • /
    • 2013
  • In this paper, we describe the analysis of inkjet-printed silver (Ag) patterns on epoxy-coated substrates according to several reliability evaluation test method guidelines for conventional printed circuit boards (PCB). To prepare patterns for the reliability analysis, various regular test patterns were created by Ag inkjet printing on flame retardant 4 (FR4) and polyimide (PI) substrates coated with epoxy for each test method. We coated the substrates with an epoxy primer layer to control the surface energy during printing of the patterns. The contact angle of the ink to the coated epoxy primer was $69^{\circ}$, and its surface energy was 18.6 $mJ/m^2$. Also, the substrate temperature was set at $70^{\circ}C$. We were able to obtain continuous line patterns by inkjet printing with a droplet spacing of $60{\mu}m$. The reliability evaluation tests included the dielectric withstanding voltage, adhesive strength, thermal shock, pressure cooker, bending, uniformity of line-width and spacing, and high-frequency transmission loss tests.

선택적 표면처리와 딥코팅 방법을 이용한 고해상도 금속 패턴 형성연구 (Patterning of high resolution metal electrodes using selective surface treatment and dip casting for printed electronics)

  • 김영훈;엄유현;박성규;오민석;강정원;한정인
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1340_1341
    • /
    • 2009
  • In this report, high-resolution metal electrode patterning is demonstrated by using selective surface treatment and dip casting for low-cost printed electronic applications. On hydrophobic octadecyltrichlorosilane treated $SiO_2$ surface, deep UV irradiation was performed through a patterned quartz photomask to selectively control the surface energy of the $SiO_2$ layer. The deep UV irradiated region becomes hydrophilic and by dipping into Ag nano-ink, Ag patterns were formed on the surface. Using this patterning technique, line patterns and dot arrays having less than $10{\mu}m$ pitch were fabricated.

  • PDF