• Title/Summary/Keyword: Surface patterning

Search Result 289, Processing Time 0.029 seconds

Fabrication of Micro Pattern on Flexible Substrate by Nano Ink using Superhydrophobic Effect (초발수 현상을 이용한 나노 잉크 미세배선 제조)

  • Son, Soo-Jung;Cho, Young-Sang;Rha, Jong Joo;Cho, Chul-Jin
    • Journal of Powder Materials
    • /
    • v.20 no.2
    • /
    • pp.120-124
    • /
    • 2013
  • This study is carried out to develop the new process for the fabrication of ultra-fine electrodes on the flexible substrates using superhydrophobic effect. A facile method was developed to form the ultra-fine trenches on the flexible substrates treated by plasma etching and to print the fine metal electrodes using conductive nano-ink. Various plasma etching conditions were investigated for the hydrophobic surface treatment of flexible polyimide (PI) films. The micro-trench on the hydrophobic PI film fabricated under optimized conditions was obtained by mechanical scratching, which gave the hydrophilic property only to the trench area. Finally, the patterning by selective deposition of ink materials was performed using the conductive silver nano-ink. The interface between the conductive nanoparticles and the flexible substrates were characterized by scanning electron microscope. The increase of the sintering temperature and metal concentration of ink caused the reduction of electrical resistance. The sintering temperature lower than $200^{\circ}C$ resulted in good interfacial bonding between Ag electrode and PI film substrate.

Ultra-Clean Patterned Transfer of Single-Layer Graphene by Recyclable Pressure Sensitive Adhesive Films

  • Kim, Sang Jin;Lee, Bora;Choi, Yong Seok;Kim, Philip;Hone, James;Hong, Byung Hee;Bae, Sukang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.301.1-301.1
    • /
    • 2016
  • We report an ultraclean, cost-effective, and easily scalable method of transferring and patterning large-area graphene using pressure sensitive adhesive films (PSAFs) at room temperature. This simple transfer is enabled by the difference in wettability and adhesion energy of graphene with respect to PSAF and a target substrate. The PSAF transferred graphene is found to be free from residues, and shows excellent charge carrier mobility as high as ${\sim}17,700cm^2/V{\cdot}s$ with less doping compared to the graphene transferred by thermal release tape (TRT) or poly(methyl methacrylate) (PMMA) as well as good uniformity over large areas. In addition, the sheet resistance of graphene transferred by recycled PSAF does not change considerably up to 4 times, which would be advantageous for more cost-effective and environmentally friendly production of large-area graphene films for practical applications.

  • PDF

Soft lithographic patterning of proteins and cells inside a microfluidic channel (소프트 리소그라피를 이용한 마이크로유체 채널 내의 단백질 및 세포 패터닝)

  • Suh, Kahp-Yang
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.1
    • /
    • pp.65-73
    • /
    • 2007
  • The control of surface properties and spatial presentation of functional molecules within a microfluidic channel is important for the development of diagnostic assays, microreactors, and for performing fundamental studies of cell biology and fluid mechanics. Here, we present soft lithographic methods to create robust microchannels with patterned microstructures inside the channel. The patterned regions were protected from oxygen plasma by controlling the dimensions of the poly(dimethylsiloxane)(PDMS) mold as well as the sequence of fabrication steps. The approach was used to pattern a non-biofouling polyethylene glycol(PEG)-based copolymer or the polysaccharide hyaluronic acid(HA) within microfluidic channels. These non-biofouling patterns were then used to fabricate arrays of fibronectin(FN) and bovine serum albumin(BSA) as well as mammalian cells.

Photosensitive Barrier Rib Paste and Materials and Process

  • Park, Lee-Soon;Kim, Soon-Hak;Jang, Dong-Gyu;Kim, Duck-Gon;Hur, Young-June;Tawfik, Ayman
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.823-827
    • /
    • 2005
  • Barrier ribs in the plasma display panel (PDP) function to maintain the discharge space between the glass plates as well as to prevent optical crosstalk. Patterning of barrier ribs is one of unique processes for making PDP. Barrier ribs could be formed by screen-printing, sand blasting, etching, and photolithographic process. In this work photosensitive barrier rib pastes were prepared by incorporating binder polymer, solvent, functional monomers photoinitiator, and barrier rib powder of which surface was treated with fumed silica particles. Studies on the function of materials for the barrier rib paste were undertaken. After optimization of paste formulation and photolithographic process, it was applied to the photosensitive barrier rib green sheet and was found that photolithographic patterning of barrier ribs could be formed with good resolution up to $110{\mu}m$ height and $60{\mu}m$ width after sintering.

  • PDF

Cu Line Fabricated with Inkjet Printing Technology for Printed Circuit Board (잉크젯 인쇄 기술을 이용한 인쇄회로기판용 나노구리배선 개발)

  • Seo, Shang-Hoon;Lee, Ro-Woon;Yun, Kwan-Soo;Joung, Jae-Woo;Lee, Hee-Jo;Yook, Jong-Gwan
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1806-1809
    • /
    • 2008
  • Study that form micro pattern by direct ink jet printing method is getting attention recently. Direct ink jet printing spout fine droplet including nano metal particle by force or air pressure. There is reason which ink jet printing method is profitable especially in a various micro-patterning technology. It can embody patterns directly without complex process such as mask manufacture or screen-printing for existent lithography. In this study, research of a technology that ejects fine droplet form of Pico liter and forms metal micro pattern was carried with inkjet head of piezoelectricity drive system. Droplet established pattern while ejecting consecutively and move on the surface at the fixed speed. Patterns formed in ink are mixed with organic solvent and polymer that act as binder. So added thermal hardening process after evaporate organic solvent at isothermal after printing. I executed high frequency special quality estimation of CPW transmission line to confirm electrical property of manufactured circuit board. We tried a large area printing to confirm application possibility of an ink jet technology.

  • PDF

Laser Patterning of Indium Tin Oxide for Flat Panel Display (평판디스플레이를 위한 Indium Tin Oxide의 레이저 페터닝)

  • Ahn, Min-young;Lee, Kyoung-cheol;Lee, Cheon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.340-343
    • /
    • 2000
  • ITO(Indium Tin Oxide) films for transparent electrodes of FPD(Flat Panel Display) were patterned in atmosphere using laser. A pulse type(repetition rate of 10 Hz) Q-switched Nd:YAG laser which can generate the fundamental wavelength at 1064 nm or its harmonics(532, 266 nm) was used for Patterning of the ITO film. In case of using the second harmonic(532 nm) of Nd:YAG laser, the ITO film(thickness of 20 nm) was removed clearly with a laser fluence of 5.2 J/$\textrm{cm}^2$ and a beam scan speed of 200${\mu}{\textrm}{m}$/s. But the glass substrate was damaged when the laser fluence was over 5.2 J/$\textrm{cm}^2$. We discussed the etching mechanism of the ITO film using Nd:YAG laser with observation of the etching characteristics including a depths and widths of ITO films as a function of laser fluence using SEM(Scanning Electron Microscopy) and surface profiler($\alpha$-step 500).

  • PDF

Laser Copper Patterning by wettability improvement of Silicon (레이저에 의한 실리콘 표면의 습윤성 향상과 구리 패터닝)

  • Kim, Dong-Yung;Lee, Kyoung-Cheol;Lee, Cheon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1080-1083
    • /
    • 2002
  • In this paper, we have studied with regard to the use of lasers for modifying the surface properties of silicon in order to improve it's wettability and adhesion characteristics. Using an Nd:YAG pulse laser, the wettability and adhesion characteristics of silicon surface have been developed by an Nd:YAG pulse laser. It was found that the laser treatment of silicon surfaces modified the surface energy. In the result of wetting experiments, by the sessile drop technique using the distilled water, wetting characteristic of silicon after the laser irradiation shows a decreased value of the contact angle. In case of the laser treated silicon surface, laser direct writing of copper lines has been achieved by pyrolytic decomposition of copper formate films$(Cu(HCOO)_2{\cdot}4H_2Q)$, using a focused $Ar^+$ laser beam$(\lambda=514.5nm)$ on the silicon substrates. The deposited patterns were measured by energy dispersive X-ray(EDX), Scanning Electron Microscopy(SEM) and surface profiler($\alpha$-step) to examine the cross section of deposited copper lines and linewidth.

  • PDF

Microfabrication of Photosensitive Glass Using Metal Patterning and Blank Exposure (금속 패터닝과 Blank노광을 이용한 감광성 유리의 미세가공)

  • Jo, Jae-Seung;Kang, Hyung-Bum;Yoon, Hye-Jin;Kim, Hyo-Jin;Lim, Hyun-Woo;Cho, Si-Hyeong;Lim, Sil-Mook
    • Journal of Surface Science and Engineering
    • /
    • v.46 no.3
    • /
    • pp.99-104
    • /
    • 2013
  • The simple and cost-effective microfabrication method of photosensitive glass (PSG) using metal patterning and blank exposure was proposed. Conventional photolithography for micromachining of PSG needs a costly quartz mask which has high transmittance as an optical property. However, in this study the process was improved through the combination of micro-patterned Ti thin film and blank UV exposure without quartz mask. The effect of UV exposure time as well as the DHF etching condition was investigated. UV exposure test was performed within the range from 3 min to 9 min. The color and etch result of PSG exposed for 5 min were the most clear and effective to etch more precisely, respectively. The etching results of PSG in diluted hydrofluoric acid (DHF) with a concentration of 5, 10, 15 vol% were compared. The effect on the side etch was insignificant while the etch rate was proportional as the concentration increased. 10 vol% DHF results not only high etch rate of 75 ${\mu}m/min$ also lower side etch value after PSG etching. This method facilitates the microfabrication of PSG with various patterns and high aspect ratio for applying to advanced applications.

Micro-patterning of light guide panel in a LCD-BLU by using on silicon crystals (실리콘 결정면을 이용한 LCD-BLU용 도광판의 미세산란구조 형성)

  • lChoi Kau;Lee, Joon-Seob;Song, Seok-Ho;Oh Cha-Hwan;Kim, Pill-Soo
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.2
    • /
    • pp.113-120
    • /
    • 2005
  • Luminous efficiency and uniformity in a LCD-BLU are mainly determined by fine scattering patterns formed on the light guide panel. We propose a novel fabrication method of 3-dimensional scattered patterns based on anisotropic etching of silicon wafers. Micro-pyramid patterns with 70.5 degree apex-angle and micro-prism patterns with 109.4 degree apex-angle can be self-constructed by the wet, anisotropic etching of (100) and (110) silicon wafers, respectively, and those patterns are easily duplicated by the PDMS replica process. Experimental results on spatial and angular distributions of irradiation from the light guide panel with the micro-pyramid patterns were very consistent with the calculation results. Surface roughness of the silicon-based micro-patterns is free from any artificial defects since the micro-patterns are inherently formed with silicon crystal surfaces. Therefore, we expect that the silicon based micro-patterning process makes it possible to fabricate perfect 3-dimensional micro-structures with crystal surface and apex angles, which may guarantee mass-reproduction of the light guide panels in LCD-BLU.

The Behavioral Characteristics of a Droplet on the Line Patterned Surface Including Water Film (수막을 가지는 선형 젖음성 패턴 표면에서의 액적 거동 특성)

  • Lee, Changwoo;Park, Jinyoung;Cho, Handong;Hwang, Woonbong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.12
    • /
    • pp.1335-1340
    • /
    • 2013
  • Herein the water film was introduced to the hydrophilic area on the line patterned surface to solve the contradiction caused by surface roughness (high different wettability has advantage to control the droplet but high roughness for that high wettability difference causes obstruction of droplet moving). Thus the droplet on the water film could not be hindered to line direction but restricted to orthogonal direction, effectively. In addition, droplet behaviors according to droplet volume and line thickness were studied. Droplet fell off the line with narrowing the interface between the droplet and the water film on the line. When the droplet fell off the line, the plate angle was designated as a critical plate angle and it used as an indicator of surface capability to control the droplet. As a result critical plate angle increases as droplet volume decreases and line thickness increases.