Browse > Article
http://dx.doi.org/10.5695/JKISE.2013.46.3.099

Microfabrication of Photosensitive Glass Using Metal Patterning and Blank Exposure  

Jo, Jae-Seung (Department of Advanced Materials Engineering, Korea Polytechnic University)
Kang, Hyung-Bum (Protom Co., Ltd.)
Yoon, Hye-Jin (Protom Co., Ltd.)
Kim, Hyo-Jin (Protom Co., Ltd.)
Lim, Hyun-Woo (Protom Co., Ltd.)
Cho, Si-Hyeong (Department of Bionano Technology, Hanyang University)
Lim, Sil-Mook (Department of Advanced Materials Engineering, Korea Polytechnic University)
Publication Information
Journal of the Korean institute of surface engineering / v.46, no.3, 2013 , pp. 99-104 More about this Journal
Abstract
The simple and cost-effective microfabrication method of photosensitive glass (PSG) using metal patterning and blank exposure was proposed. Conventional photolithography for micromachining of PSG needs a costly quartz mask which has high transmittance as an optical property. However, in this study the process was improved through the combination of micro-patterned Ti thin film and blank UV exposure without quartz mask. The effect of UV exposure time as well as the DHF etching condition was investigated. UV exposure test was performed within the range from 3 min to 9 min. The color and etch result of PSG exposed for 5 min were the most clear and effective to etch more precisely, respectively. The etching results of PSG in diluted hydrofluoric acid (DHF) with a concentration of 5, 10, 15 vol% were compared. The effect on the side etch was insignificant while the etch rate was proportional as the concentration increased. 10 vol% DHF results not only high etch rate of 75 ${\mu}m/min$ also lower side etch value after PSG etching. This method facilitates the microfabrication of PSG with various patterns and high aspect ratio for applying to advanced applications.
Keywords
Photosensitive glass (PSG); Blank exposure; Microfabrication; Glass etching;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Becker, M. Arundell, A. Harnisch, D. Hulsenberg, Sens. Actuators B, 86 (2002) 271.   DOI   ScienceOn
2 F. E. Livingston, P. M. Adams, H. Helvajian, Appl. Surf. Sci., 247 (2005) 526.   DOI   ScienceOn
3 T. T. Dietrich, W. Ehrfeld, M. Lacher, M. Kramer, B. Speit, Microelectron. Eng., 30 (1996) 497.   DOI   ScienceOn
4 M. Kosters, H.-T. Hsieh, D. Psaltis, K. Buse, Appl. Opt., 44 (2005) 3399.   DOI
5 S. D. Stookey, Ind. Eng. Chem., 45 (1953) 115.
6 H.-J. Kim, S.-H. Lee, S.-J. Yon, S.-C. Choi, J. Korean Cream. Soc., 37 (2000) 82.
7 S. Etoh, T. Fujimura, R. Hattori, Y. Kuroki, Microsyst. Technol., 9 (2003) 541.   DOI
8 U. Brokmann, K. Sonnichsen, D. Hulsenberg, Mircosyst. Technol., 14 (2008) 1635.
9 C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, H. L. Tsai, Appl. Phys. A, 97 (2009) 751.   DOI
10 T. R. Dietrich, A. Freitag, R. Scholz, Chem. Eng. Technol., 28 (1005) 477.   DOI   ScienceOn
11 T. Ito, M. Kunimatsu, Electrochem. Commun., 8 (2006) 91.   DOI   ScienceOn
12 U. Park, K. Yoo, J. Kim, Sens. Actuators A, 159 (2010) 51.   DOI   ScienceOn
13 Z. Wang, K. Sugioka, K. Midorikawa, Appl. Phys. A, 89 (2007) 951.   DOI
14 P. J. Resnick, C. L. J. Adkins, P. J. Clews, E. V. Thomas, N. C. Korbe, Mater. Res. Soc. Symp. Proc., 386 (1995) 21.   DOI
15 U. Kreibig, Appl. Phys., 10 (1976) 255.   DOI
16 S. D. Stookey, G. H. Beall, J. E. Pierson, J. Appl. Phys., 49 (1978) 5114.   DOI   ScienceOn