• Title/Summary/Keyword: Surface of Concrete

Search Result 2,432, Processing Time 0.026 seconds

Spectral Energy Transmission Method for Crack Depth Estimation in Concrete Structures (콘크리트 구조물의 균열 깊이 추정을 위한 스펙트럼 에너지 기법)

  • Shin, Sung-Woo;Min, Ji-Young;Yun, Chung-Bang;Popovics, John S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.2
    • /
    • pp.164-172
    • /
    • 2007
  • Surface cracks in concrete are common defects that can cause significant deterioration and failure of concrete structures. Therefore, the early detection, assessment, and repair of the cracks in concrete are very important for the structural health. Among studies for crack depth assessment, self-calibrating surface wave transmission method seems to be a promising nondestructive technique, though it is still difficult in determination of the crack depth due to the variation of the experimentally obtained transmission functions. In this paper, the spectral energy transmission method is proposed for the crack depth estimation in concrete structures. To verify this method, an experimental study was carried out on a concrete slab with various surface-opening crack depths. Finally, effectiveness of the proposed method is validated by comparing the conventional time-of-flight and cutting frequency based methods. The results show an excellent potential as a practical and reliable in-situ nondestructive method for the crack depth estimation in concrete structures.

An Experimental Study on the Evaluation of Hydration Heat of Low Heat Concrete (in case of Belite rich Cement) (저발열 콘크리트 수화열 평가의 실험적 연구 (Belite rich 시멘트 중심))

  • 현석훈;박춘근;신영인;김용호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.352-357
    • /
    • 1996
  • In hardening massive concrete, the heat of hydation gives rise to considerable thermal gradientsand thermal stresses, which might cause early age cracking. This paper deals with the results of evaluation of hydration heat of low hear concrete, using Belite rich cement (low heat cement) and compared with OPC, slag added cement and fly ash addedcement. Result of evaluation of hydration are presented in this paper. The concrete made with Belite rich cement gets low temperature of center point and low thermal gradients between surface and center points.

  • PDF

A Study on Quality Control of Waterproof Agent and Admixture of Cement for Concrete Surface Treatment (콘크리트 표면처리용 시멘트 액체방수제의 품질관리에 관한 연구)

  • 최은수;곽규성;배기선;오상근;안상덕
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.181-188
    • /
    • 2000
  • This study deals with the method of test for waterproof agent and admixture of cement, and especially, the effect in bond strength between waterproofing layer and mortar of concrete substrate in building construction. The purpose of this study is that it makes the estimation value of bond strength of concrete wall and anticorrosive when coated waterproof agent and admixture of cement as waterproofing materials for durability performance estimation depend on concrete watertighness.

  • PDF

A Prediction of Remaining Service Life of Concrete for Irrigation Structure by Measuring Carbonation (중성화 측정을 통한 콘크리트의 잔존수명 예측)

  • 이준구;박광수;신수균;김관호;윤성수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.773-778
    • /
    • 2002
  • The variance characteristics of the calcium carbonate contents along to the concrete cover depth takes the prediction method of remaining service life of concrete. Calcium carbonate contents were measured by the Thermo Gravimetric/Differential Thermal Analysis method at three point, depth of 0.25cm, 0.75cm, 1.25cm from the surface of concrete. This prediction method contain some assumption that the chemical protection conferred on steel is through a passive protective oxide film which forms on steel in an environment at or above a pH of 10.5$^{4)}$ .

  • PDF

An Experimental Study on Carbonation Resistance of Concrete Depending on Surface Treatment of Lightweight Aggregates (경량골재의 표면처리에 따른 콘크리트의 탄산화 저항성에 관한 실험적 연구)

  • Eom, In-Hyeok;On, Jea-Hoon;Kim, Young-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.89-91
    • /
    • 2012
  • The purpose of this study is to investigate the mechanical property and carbonation resistance of concretes using surface treated lightweight aggregate. In order to evaluate mechanical property and carbonation resistance, slump, compressive strength, and carbonation depth are tested. Slump of concretes using surface treated lightweight aggregate measured 120~125mm, which are lower than slump of NWAC. Compared to compressive strength of NWAC, compressive strength of concretes using surface treated lightweight aggregate showed a level of 82.8~95.9%. In carbonation resistance test, carbonation depth of concretes using surface treated lightweight aggregate measured 10.2~11.3mm, which are lower than carbonation depth of NWAC. As a result, it is found that compressive strength is decreased slightly but carbonation resistance is improved, in case of using surface treated lightweight aggregate.

  • PDF

Structural Characteristics of Concrete Filled Glass Fiber Reinforced Composite Tube (콘크리트 충진 유리섬유 복합소재 튜브 합성압축부재의 구조적 특성분석)

  • 이성우;박신전;최석환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.571-574
    • /
    • 1999
  • Due to many advantages of advanced composite material, research on the composite compression member is initiated. In this paper structural characteristics of concrete filled glass fiber reinforced composite tubular member si studied. Experimental results shows that strength and ductility of composite compression member is considerably increased due to concrete confinement action of composite surface. Thus it can be anticipated that increased strength of concrete will be incorporated in the design of composite compression member.

  • PDF

Fundamental properties of polymer composite materials for concrete repair (콘크리트 보수용 폴리머 복합재료의 기초적 성질)

  • 지경용;연규석;이윤수;전철수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.319-322
    • /
    • 1999
  • The adhesion properties of polymer cement mortars for cement concrete repair were evaluated with respect to polymer-cement ratios and the surface conditions of cement concrete substrate. Styrene-butadiene rubber (SBR) was used as an additive for polymer cement mortars. The adhesion strength of cement mortar was smaller than that of polymer cement mortar. The adhesion strengths to the dry surfaces of substrate were larger than those to the wet surfaces, indicating that the dryness of substrate increased the adhesion strength in repairing concrete structures.

  • PDF

Evaluation of Properties of Recycled Concretes for use in Surface and Base Course Concrete (도로표층 및 기층용 콘크리트로 재생 콘크리트의 특성 연구)

  • 김광우;도영수;이상범;정일권
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.27-32
    • /
    • 1999
  • This study was performed to evaluate properties of recycled concrete for roadway pavement. Recycled concretes was manufactured for the target compressive strength of 280kg/$\textrm{cm}^2$ and 180kg/$\textrm{cm}^2$ with recycled aggregate ratio of 0%, 20%, 40%, 60%, 80%, respectively. Laboratory experiment was conducted for testing properties of fresh concrete and concrete strength at curing 28days and durability by freezing and thawing treatment. The study result presented a maximum replacement ratio of recycled material.

  • PDF

The Effects of Coloring Admixture on the Material Properties of Color Concrete (착색재가 칼라콘크리트의 물성에 미치는 영향)

  • 이성로;김종식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.150-154
    • /
    • 2000
  • Coloring admixture is used for take color inside and outside of mortar and concrete, differently form pigment and spray paint take color limited surface. In our country, Using the coloring admixture is very slight and regulation is not yet about it. But that is expected the increase with raising the standard of living. Especially it is used to civil structure like dam and seawall for the environment harmony. Then we observe, in this experiment, the effect of coloring admixture on the material properties of color concrete and propose the suitable mix-proportion of color concrete.

  • PDF

Mechanical properties of pervious concrete with recycled aggregate

  • Zhu, Xiangyi;Chen, Xudong;Shen, Nan;Tian, Huaxuan;Fan, Xiangqian;Lu, Jun
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.623-635
    • /
    • 2018
  • In order to research the influence of different recycled aggregate contents on the mechanical properties of pervious concrete, the experimental study and numerical simulation analysis of the mechanical properties of pervious concrete with five kinds of recycled aggregates contents (0%, 25%, 50%, 75% and 100%) are carried out in this paper. The experimental test were first performed on concrete specimens of different sizes in order to determine the influence of recycled aggregate on the compressive strength and splitting tensile strength, direct tension strength and bending strength. Then, the development of the internal cracks of pervious concrete under different working conditions is studied more intuitively by $PFC^{3D}$. The experimental results show that the concrete compressive strength, tensile strength and bending strength decrease with the increase of the recycled aggregate contents. This trend of reduction is not only related to the brittleness of recycled aggregate concrete, but also to the weak viscosity of recycled aggregate and cement paste. It is found that the fracture surface of pervious concrete with recycled aggregate is smoother than that of natural aggregate pervious concrete by $PFC^{3D}$, which means that the bridging effect is weakened in the stress transfer between the left and right sides of the crack. Through the analysis of the development of the internal cracks, the recycled aggregate concrete generated more cracks than the natural aggregate concrete, which means that the recycled aggregate concrete is easier to form a coalescence fracture surface and eventually break.