• Title/Summary/Keyword: Surface mining

Search Result 302, Processing Time 0.035 seconds

Promoting the Quarry Workers' Hazard Identification Through Formal and Informal Safety Training

  • Bae, Hwangbo;Simmons, Denise R.;Polmear, Madeline
    • Safety and Health at Work
    • /
    • v.12 no.3
    • /
    • pp.317-323
    • /
    • 2021
  • Background: The surface mining industry has one of the highest fatality rates among private industries in the United States. Despite recent decreases in the fatality rates of comparable industries, the fatality rate in the surface mining industry has increased. Meanwhile, a lack of safety research in surface mining has hindered efforts to improve safety strategies in the surface mining workplace. Method: This study examined quarry workers' hazard identification skills by conducting a case study of a surface mining facility in the Mid-Atlantic region of the United States. Semistructured interviews were conducted with eight quarry workers who were employed at the mine facility. In addition to the interviews, data were collected through field notes, notes from an expert meeting with safety managers, and site photographs to explore quarry workers' safety behaviors in the workplace. Results: The results showed that quarry workers identified hazards and improved their safety performance by translating safety knowledge learned from training into practice, acquiring hands-on work experience, learning from coworkers, and sharing responsibilities among team members. Conclusion: This study contributes to understanding quarry workers' safe performance beyond what they have learned in safety training to include their interaction with other workers and hand-on experience in the workplace. This study informs practitioners in the surface mining industry to build a safe work environment as they design effective safety programs for employees.

Deformation process and prediction of filling gangue: A case study in China

  • Wang, Changxiang;Lu, Yao;Li, Yangyang;Zhang, Buchu;Liang, Yanbo
    • Geomechanics and Engineering
    • /
    • v.18 no.4
    • /
    • pp.417-426
    • /
    • 2019
  • Gangue filling in the goaf is an effective measure to control the surface subsidence. However, due to the obvious deformation of gangue compression, the filling effect deserves to be further studied. To this end, the deformation of coal gangue filling in the goaf is analyzed by theoretical analysis, large-scale crushed rock compression test, and field investigation. Through the compression test of crushed rock, the deformation behaviour characteristics and energy dissipation characteristics is obtained and analysed. The influencing factors of gangue filling and predicted amount of main deformation are summarized. Besides, the predicted equation and filling subsidence coefficients of gangue are obtained. The gangue filling effect was monitored by the movement observation of surface rock. Gangue filling can support the roof of the goaf, effectively control the surface subsidence with little influence on the ground villages. The premeter and equations of the main deformation in the gangue filling are verified, and the subsidence coefficient is further reduced by adding cemented material or fine sand. This paper provides a practical and theoretical reference for further development of gangue filling.

Assessment of Sinkhole Occurrences Using Fuzzy Reasoning Techniques

  • Deb D.;Choi S.O.
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2004.10a
    • /
    • pp.171-180
    • /
    • 2004
  • Underground mining causes surface subsidence long after the mining operation had been ceased. Surface subsidence can be in the form of saucer-shaped depression or collapsed chimneys or sinkholes. Sinkhole formations are predominant over shallow-depth room and pillar mines having weak overburden strata. In this study, occurrences of sinkholes due to mining activity are assessed based on local geological conditions and mining parameters using fuzzy reasoning techniques. All input and output parameters are represented with linguistic hedges. Numerous fuzzy rules are developed to relate sinkhole occurrences with input parameters using fuzzy relational matrix. Based on the combined fuzzy rules, possibility of sinkhole occurrences can be ascertained once the geological and mining parameters of any area are known.

  • PDF

Statistical Analysis and Prediction for Behaviors of Tracked Vehicle Traveling on Soft Soil Using Response Surface Methodology (반응표면법에 의한 연약지반 차량 거동의 통계적 분석 및 예측)

  • Lee Tae-Hee;Jung Jae-Jun;Hong Sup;Km Hyung-Woo;Choi Jong-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.3 s.70
    • /
    • pp.54-60
    • /
    • 2006
  • For optimal design of a deep-sea ocean mining collector system, based on self-propelled mining vehicle, it is imperative to develop and validate the dynamic model of a tracked vehicle traveling on soft deep seabed. The purpose of this paper is to evaluate the fidelity of the dynamic simulation model by means of response surface methodology. Various statistical techniques related to response surface methodology, such as outlier analysis, detection of interaction effect, analysis of variance, inference of the significance of design variables, and global sensitivity analysis, are examined. To obtain a plausible response surface model, maximum entropy sampling is adopted. From statistical analysis and prediction for dynamic responses of the tracked vehicle, conclusions will be drawn about the accuracy of the dynamic model and the performance of the response surface model.

Field test and numerical study of the effect of shield tail-grouting parameters on surface settlement

  • Shao, Xiaokang;Yang, Zhiyong;Jiang, Yusheng;Yang, Xing;Qi, Weiqiang
    • Geomechanics and Engineering
    • /
    • v.29 no.5
    • /
    • pp.509-522
    • /
    • 2022
  • Tail-grouting is an effective measure in shield engineering for filling the gap at the shield tail to reduce ground deformation. However, the gap-filling ratio affects the value of the gap parameters, leading to different surface settlements. It is impossible to adjust the fill ratio indiscriminately to study its effect, because the allowable adjustment range of the grouting quantity is limited to ensure construction site safety. In this study, taking the shield tunnel section between Chaoyanggang Station and Shilihe Station of Beijing Metro Line 17 as an example, the correlation between the tail-grouting parameter and the surface settlement is investigated and the optimal grouting quantity is evaluated. This site is suitable for conducting field tests to reduce the tail-grouting quantity of shield tunneling over a large range. In addition, the shield tunneling under different grouting parameters was simulated. Furthermore, we analyzed the evolution law of the surface settlement under different grouting parameters and obtained the difference in the settlement parameters for each construction stage. The results obtained indicate that the characteristics of the grout affect the development of the surface settlement. Therefore, reducing the setting time or increasing the initial strength of the grout could effectively suppress the development of surface subsidence. As the fill ratio decreases, the loose zone of the soil above the tunnel expands, and the soil deformation is easily transmitted to the surface. Meanwhile, owing to insufficient grout support, the lateral pressure on the tunnel segments is significantly reduced, and the segment moves considerably after being removed from the shield tail.

SEISMIC MONITORING IN SURFACE MINES

  • Ajay Kumar, L.;David Raj, D. Edwin;Renaldy, T. Amrith;Vinoth, S.
    • Tunnel and Underground Space
    • /
    • v.19 no.3
    • /
    • pp.174-180
    • /
    • 2009
  • This paper gives a brief review of seismicity and seismic monitoring in surface mines. A summary of various researches related to seismicity is presented. Our research focuses on the understanding of seismicity and the application of analytical techniques to seismicity. Seismic monitoring plays an important role in the identification of potential failure planes and thereby predict potential failures. Much of the instrumentation used in our research is derived from earthquake monitoring systems. The major aspects in seismic monitoring are an instrumentation used, size of the network and data acquisition systems. Seismic monitoring in surface mines could be successfully applied to the improvement of safety standards in slope stability.

Influence of explosives distribution on coal fragmentation in top-coal caving mining

  • Liu, Fei;Silva, Jhon;Yang, Shengli;Lv, Huayong;Zhang, Jinwang
    • Geomechanics and Engineering
    • /
    • v.18 no.2
    • /
    • pp.111-119
    • /
    • 2019
  • Due to certain geological characteristics (high thickness, rocky properties), some underground coal mines require the use of explosives. This paper explores the effects of fragmentation of different decks detonated simultaneously in a single borehole with the use of numerical analysis. ANSYS/LS-DYNA code was used for the implementation of the models. The models include an erosion criterion to simulate the cracks generated by the explosion. As expected, the near-borehole area was damaged by compression stresses, while far zones and the free surface of the boundary were subjected to tensile damage. With the increase of the number of decks in the borehole, different changes in the fracture pattern were observed, and the superposition effects of the stress wave became evident, affecting the fragmentation results. The superposition effect is more evident in close distances to the borehole, and its effect attenuates when the distance to the borehole increase.

Compression characteristics of filling gangue and simulation of mining with gangue backfilling: An experimental investigation

  • Wang, Changxiang;Shen, Baotang;Chen, Juntao;Tong, Weixin;Jiang, Zhe;Liu, Yin;Li, Yangyang
    • Geomechanics and Engineering
    • /
    • v.20 no.6
    • /
    • pp.485-495
    • /
    • 2020
  • Based on the movement characteristics of overlying strata with gangue backfilling, the compression test of gangue is designed. The deformation characterristics of gangue is obtained based on the different Talbot index. The deformation has a logarithmic growth trend, including sharp deformation stage, linear deformation stage, rheological stage, and the resistance to deformation changes in different stages. The more advantageous Talbot gradation index is obtained to control the surface subsidence. On the basis of similarity simulation test with gangue backfilling, the characteristics of roof failure and the evolution of the supporting force are analyzed. In the early stage of gangue backfilling, beam structure damage directly occurs at the roof, and the layer is separated from the overlying rock. As the working face advances, the crack arch of the basic roof is generated, and the separation layer is closed. Due to the supporting effect of filling gangue, the stress concentration in gangue backfilling stope is relatively mild. Based on the equivalent mining height model of gangue backfilling stope, the relationship between full ratio and mining height is obtained. It is necessary to ensure that the gradation of filling gangue meets the Talbot distribution of n=0.5, and the full ratio meets the protection grade requirements of surface buildings.

A Study on the Correlation between Coal Mining Subsidence and Underground Goaf (페탄광지역의 지반침하발생과 지하 채굴적의 상관관계 연구)

  • Choi, Jong-Kuk;Kim, Ki-Dong;Song, Kyo-Young;Jo, Min-Jeong
    • Economic and Environmental Geology
    • /
    • v.41 no.4
    • /
    • pp.453-464
    • /
    • 2008
  • This study is to examine a relation between coal mining subsidence occurrence at abandoned underground coal mines and underground goaf with respect to surface geology, subsurface structure, depth and thickness of coal beds and the distribution of drifts. A study is carried out at the site where susceptibility of coal mining subsidence was proven high in a previous study. In that previous study, the susceptibility of coal mining subsidence was spatially analyzed by GIS using digitized geological maps, investigation reports, digitized mining tunnel maps without consideration of subsurface structure and the multi-level arrangement of drifts. Here we analyze geological characteristics around the goaf and the distribution of coal seam based upon digitized geological maps and investigation reports on the study area. And digitized mining tunnel maps are also used to analyze the depth and multi-level arrangement of drifts. The results show that weakened surface rock strength, relatively shallow depth and large thickness of coal seam below the surface are closely related to the coal mining subsidence occurrence. Complicatedly inter-connected drifts, shallow depth of drifts and surface rock fractures are revealed as additional control factors affecting coal mining subsidence. These factors examined in this study as well as original factors should be taken into account for the quantitative estimation of coal mining subsidence occurrence at abandoned underground coal mine.

Experimental study of shear behavior of planar nonpersistent joint

  • Haeri, Hadi;Sarfarazi, Vahab;Lazemi, Hossein Ali
    • Computers and Concrete
    • /
    • v.17 no.5
    • /
    • pp.639-653
    • /
    • 2016
  • The present article discusses the effect of the ratio of bridge surface to total shear surface, number of bridge areas and normal stress on the failure behavior of the planar non-persistent open joints. Totally, 38 models were prepared using plaster and dimensions of $15cm{\times}15cm{\times}15cm$. The bridge area occupied $45cm^2$, $90cm^2$ and $135cm^2$ out of the shear surface. The number of rock bridges increase in fixed area. Two similar samples were prepared on every variation in the rock bridges and tested for direct shear strength under two high and low normal loads. The results indicated that the failure pattern and the failure mechanism is mostly influenced by the ratio of bridge surface to total shear surface and normal stress so that the tensile failure mode change to shear failure mode by increasing in the value of introduced parameters. Furthermore, the shear strength and shear stiffness are closely related to the ratio of bridge surface to total shear surface, number of bridge areas and normal stress.