• 제목/요약/키워드: Surface landmarks

검색결과 39건 처리시간 0.022초

The relationship of maxillary canines to the facial anatomical landmarks in a group of Thai people

  • Sinavarat, Potchaman;Anunmana, Chuchai;Hossain, Sharafat
    • The Journal of Advanced Prosthodontics
    • /
    • 제5권4호
    • /
    • pp.369-373
    • /
    • 2013
  • PURPOSE. The objective was to evaluate canine positions, intercanine tip width (ICTW) and width of distal surface of canine (WDC), related to facial landmarks including interalar width (IAW), intercommissural width (ICoW), and distance between left and right projection lines drawn from inner canthus of eyes to alae of the nose (DPICa) in a group of Thai. MATERIALS AND METHODS. One hundred Thai subjects aged 18-35 years were selected. IAW and ICoW were measured on subject's face using digital vernier caliper. Irreversible hydrocolloid impression of the upper arch was taken, and a cast was poured with dental stone. Silicone impression material was used to take imprint of the incisal edge of upper six anterior teeth. DPICa was obtained from the subject's face using custom-made measuring equipment and marked on the silicone incisal imprint. The marks were then transferred from the imprint to the stone cast and measured with digital caliper. The ICTW and WDC were also measured on the stone cast. Pearson's correlation was used to determine the correlation. RESULTS. The results revealed that the correlation between ICTW-ICoW was 0.429 and ICTW-DPICa was 0.573. The correlation between WDC-ICoW was 0.426 and WDC-DPICa was 0.547. However, IAW did not show any correlation with ICTW or WDC (P>.05). CONCLUSION. The correlation between canine position and facial landmarks was found. ICTW and WDC had relationship with ICoW and DPICa. DPICa showed stronger correlation with the position of maxillary canine than that of ICoW.

정상교합의 치열궁형태에 관한 연구 (A STUDY OF DENIAL ARCH FORM IN NORMAL OCCLUSION)

  • 조주환;이기수
    • 대한치과교정학회지
    • /
    • 제14권2호
    • /
    • pp.249-261
    • /
    • 1984
  • This study was to investigate the fitness of the dental arch line to the parabola, and to estimate correlation between the parabola and some ratios of the dental arch measurements. The sample was consisted of the 64 plaster casts showing normal occlusion which was taken from males and females of Korea, aging from 15 to 18 years. The photos of occlusal surface of the plaster casts were taken, and 38 landmarks on the film were selected. The 3 dental arch lines on each dental arch were imaged. One is the dental arch line passing the points of the most buccal surfaces of the teeth, another is that passing the buccal cusp tips of the posterior teeth and the incisal edges, and the other is that passing the midpoints of the teeth. The landmarks on the film were digitized, and measurements and statistics were performed by the IBM computer. The results were as follows; 1. The fitness of the dental arch to the parabola was very good. The fitness of thor upper dental arch was above $91\%$, and that of the lower dental arch was $93\%$. 2. The dental arch line passing the points of the most buccal surfaces of teeth was best fit to the parabola, the buccal cusp tip arch line and the midpoint arch line in order. 3. Correlation between the ratio of oblique molar dental height to molar width and the parabola was very high. 4. The ratio of oblique molar dental height to molar width was devided into 4 groups by the quartiles, and mean parabolic equations and curves were calculated and drawn.

  • PDF

Validation of a new three-dimensional imaging system using comparative craniofacial anthropometry

  • Naini, Farhad B.;Akram, Sarah;Kepinska, Julia;Garagiola, Umberto;McDonald, Fraser;Wertheim, David
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제39권
    • /
    • pp.23.1-23.8
    • /
    • 2017
  • Background: The aim of this study is to validate a new three-dimensional craniofacial stereophotogrammetry imaging system (3dMDface) through comparison with manual facial surface anthropometry. The null hypothesis was that there is no difference between craniofacial measurements using anthropometry vs. the 3dMDface system. Methods: Facial images using the new 3dMDface system were taken from six randomly selected subjects, sitting in natural head position, on six separate occasions each 1 week apart, repeated twice at each sitting. Exclusion criteria were excess facial hair, facial piercings and undergoing current dentofacial treatment. 3dMDvultus software allowed facial landmarks to be marked and measurements recorded. The same measurements were taken using manual anthropometry, using soluble eyeliner to pinpoint landmarks, and sliding and spreading callipers and measuring tape to measure distances. The setting for the investigation was a dental teaching hospital and regional (secondary and tertiary care) cleft centre. The main outcome measure was comparison of the craniofacial measurements using the two aforementioned techniques. Results: The results showed good agreement between craniofacial measurements using the 3dMDface system compared with manual anthropometry. For all measurements, except chin height and labial fissure width, there was a greater variability with the manual method compared to 3D assessment. Overall, there was a significantly greater variability in manual compared with 3D assessments (p < 0.02). Conclusions: The 3dMDface system is validated for craniofacial measurements.

랜드마크 (Landmark)를 이용한 방사선 치료 X선 시뮬레이터 영상과 포탈영상의 비교법 연구 (A Study of the Registration of Simulator Images and Portal Images Using Landmarks in Radiation Treatment)

  • 이정애;서태석;최보영;이형구
    • 한국의학물리학회지:의학물리
    • /
    • 제12권2호
    • /
    • pp.177-184
    • /
    • 2001
  • 방사선 치료목표는 정해진 방사선량을 병변부위에 정확하게 조사시키고 주위 정상조직에는 방사선이 조사되지 알도록 하는 것이다. 이때에 조사야 배치, 차폐체 배치의 부정확성, 환자의 움직임 등으로 병변부위와 치료부위 사이에서 변위오차가 발생할 수 있다. 본 연구에서는 방사선 치료 위치의 확인을 위한 방법으로서 랜드마크를 이용하여 포탈영상과 x선 시뮬레이터 영상을 비교하는 알고리즘을 개발하여 방사선 치료 시 발생하는 부정확도를 이동, 스케일, 회전 정도로 나타내어 정량적으로 확인하였다. 등록 알고리즘은 랜드마크 정합 후 필드 경계 정합에 의해 두 영상의 변위오차를 분석하는 순서로 구현된다. 우선 각 영상의 두개의 랜드마크를 이은 대응선분들을 이용하여 변환변수 (이동, 스케일, 회전)를 구하여 랜드마크를 정합하였다. 다음으로 포탈영상의 필드경계를 추출한 후 $\rho$-$\theta$ technique을 적용하여 두 필드의 변위오차를 계산하였다. 팬톰 포탈영상에 적용하여 이동에서 2mm 이내, 회전에서 1$^{\circ}$ 이내, 스케일에서 1% 이내의 오차를 보였다. 본 연구의 결과를 통하여 방사선 치료 시 시뮬레이터 영상과 포탈영상을 정량적으로 분석함으로서, 환자 치료의 정확도 확인 연구에 기여할 수 있을 것으로 사료된다.

  • PDF

Soft-tissue thickness of South Korean adults with normal facial profiles

  • Cha, Kyung-Suk
    • 대한치과교정학회지
    • /
    • 제43권4호
    • /
    • pp.178-185
    • /
    • 2013
  • Objective: To standardize the facial soft-tissue characteristics of South Korean adults according to gender by measuring the soft-tissue thickness of young men and women with normal facial profiles by using three-dimensional (3D) reconstructed models. Methods: Computed tomographic images of 22 men aged 20 - 27 years and 18 women aged 20 - 26 years with normal facial profiles were obtained. The hard and soft tissues were three-dimensionally reconstructed by using Mimics software. The soft-tissue thickness was measured from the underlying bony surface at bilateral (frontal eminence, supraorbital, suborbital, inferior malar, lateral orbit, zygomatic arch, supraglenoid, gonion, supraM2, occlusal line, and subM2) and midline (supraglabella, glabella, nasion, rhinion, mid-philtrum, supradentale, infradentale, supramentale, mental eminence, and menton) landmarks. Results: The men showed significantly thicker soft tissue at the supraglabella, nasion, rhinion, mid-philtrum, supradentale, and supraglenoid points. In the women, the soft tissue was significantly thicker at the lateral orbit, inferior malar, and gonion points. Conclusions: The soft-tissue thickness in different facial areas varies according to gender. Orthodontists should use a different therapeutic approach for each gender.

An Effective Retinal Vessel and Landmark Detection Algorithm in RGB images

  • Jung Eun-Hwa
    • International Journal of Contents
    • /
    • 제2권3호
    • /
    • pp.27-32
    • /
    • 2006
  • We present an effective algorithm for automatic tracing of retinal vessel structure and vascular landmark extraction of bifurcations and ending points. In this paper we deal with vascular patterns from RGB images for personal identification. Vessel tracing algorithms are of interest in a variety of biometric and medical application such as personal identification, biometrics, and ophthalmic disorders like vessel change detection. However eye surface vasculature tracing in RGB images has many problems which are subject to improper illumination, glare, fade-out, shadow and artifacts arising from reflection, refraction, and dispersion. The proposed algorithm on vascular tracing employs multi-stage processing of ten-layers as followings: Image Acquisition, Image Enhancement by gray scale retinal image enhancement, reducing background artifact and illuminations and removing interlacing minute characteristics of vessels, Vascular Structure Extraction by connecting broken vessels, extracting vascular structure using eight directional information, and extracting retinal vascular structure, and Vascular Landmark Extraction by extracting bifurcations and ending points. The results of automatic retinal vessel extraction using jive different thresholds applied 34 eye images are presented. The results of vasculature tracing algorithm shows that the suggested algorithm can obtain not only robust and accurate vessel tracing but also vascular landmarks according to thresholds.

  • PDF

Validation of a low-cost portable 3-dimensional face scanner

  • Liu, Catherine;Artopoulos, Andreas
    • Imaging Science in Dentistry
    • /
    • 제49권1호
    • /
    • pp.35-43
    • /
    • 2019
  • Purpose: The goal of this study was to assess the accuracy and reliability of a low-cost portable scanner (Scanify) for imaging facial casts compared to a previously validated portable digital stereophotogrammetry device (Vectra H1). This in vitro study was performed using 2 facial casts obtained by recording impressions of the authors, at King's College London Academic Centre of Reconstructive Science. Materials and Methods: The casts were marked with anthropometric landmarks, then digitised using Scanify and Vectra H1. Computed tomography (CT) scans of the same casts were performed to verify the validation of Vectra H1. The 3-dimensional (3D) images acquired with each device were compared using linear measurements and 3D surface analysis software. Results: Overall, 91% of the linear Scanify measurements were within 1 mm of the corresponding reference values. The mean overall surface difference between the Scanify and Vectra images was <0.3mm. Significant differences were detected in depth measurements. Merging multiple Scanify images produced significantly greater registration error. Conclusion: Scanify is a very low-cost device that could have clinical applications for facial imaging if imaging errors could be corrected by a future software update or hardware revision.

Evaluation of accuracy of 3D reconstruction images using multi-detector CT and cone-beam CT

  • Kim, Mi-Ja;Huh, Kyung-Hoe;YI, Won-Jin;Heo, Min-Suk;Lee, Sam-Sun;Choi, Soon-Chul
    • Imaging Science in Dentistry
    • /
    • 제42권1호
    • /
    • pp.25-33
    • /
    • 2012
  • Purpose : This study was performed to determine the accuracy of linear measurements on three-dimensional (3D) images using multi-detector computed tomography (MDCT) and cone-beam computed tomography (CBCT). Materials and Methods : MDCT and CBCT were performed using 24 dry skulls. Twenty-one measurements were taken on the dry skulls using digital caliper. Both types of CT data were imported into OnDemand software and identification of landmarks on the 3D surface rendering images and calculation of linear measurements were performed. Reproducibility of the measurements was assessed using repeated measures ANOVA and ICC, and the measurements were statistically compared using a Student t-test. Results : All assessments under the direct measurement and image-based measurements on the 3D CT surface rendering images using MDCT and CBCT showed no statistically difference under the ICC examination. The measurements showed no differences between the direct measurements of dry skull and the image-based measurements on the 3D CT surface rendering images (P>.05). Conclusion : Three-dimensional reconstructed surface rendering images using MDCT and CBCT would be appropriate for 3D measurements.

3차원 영상에 의한 안면 비대칭의 분석 (Analysis of Facial Asymmetry with Three-Dimensional Morphometry)

  • 조홍규
    • 대한치과기공학회지
    • /
    • 제27권1호
    • /
    • pp.27-39
    • /
    • 2005
  • This study is to show the qualitative analytic methods of facial asymmetry with three-dimensional morphometry and find out asymmetry change resulted from enlarging three local regions. Steel balls (1.2mm in diameter) were attached in twenty seven landmarks of a symmetrical artificial human skull. This artificial human skull was used as experimental materials. Twelve different asymmetrical artificial human skulls were formed by gradually enlarging the mandibular body length, gonial angle, and ramus height of the left hemiface. From the three-dimensional morphometry of each skull type, nine local area measurements and three total sum area measurements(representing the mandibular area, maxillary area, and lower facial area) were acquired and made into the surface area asymmetry degree. Menton deviation itself was used as the surface area asymmetry degree while right-left percentages were used in the other measurements. These surface area asymmetry degrees were compared with each other to find out asymmetry change according to the degree of actual facial asymmetry. Through the statistical analysis, following results were obtained. The results were as follows: 1. Left maxillary area of artificial human skull was 7.13$\pm$0.26% larger while mandibular area was 4.14$\pm$0.12% smaller than each those of right hemiface. After all, left lower facial area was 1.44$\pm$0.07% larger than those of right hemiface.(n=7). 2. Among the reduce rates of surface area asymmetry degree resulted from enlarging three local regions, ramus height was similar to mandibular body length while it was bigger than those of gonial angle. 3. Among the increase rates of menton deviation resulted from enlarging the local regions, ramus height was the biggest, mandibular body length was the second and gonial angle was the smallest. These results suggest that three-dimensional morphometry can be used to qualitatively analyse facial asymmetry and the asymmetry degree is more influenced by enlarging the ramus height, mandibular body length than those of gonial angle.

  • PDF

Accuracy and precision of integumental linear dimensions in a three-dimensional facial imaging system

  • Kim, Soo-Hwan;Jung, Woo-Young;Seo, Yu-Jin;Kim, Kyung-A;Park, Ki-Ho;Park, Young-Guk
    • 대한치과교정학회지
    • /
    • 제45권3호
    • /
    • pp.105-112
    • /
    • 2015
  • Objective: A recently developed facial scanning method uses three-dimensional (3D) surface imaging with a light-emitting diode. Such scanning enables surface data to be captured in high-resolution color and at relatively fast speeds. The purpose of this study was to evaluate the accuracy and precision of 3D images obtained using the Morpheus 3D$^{(R)}$ scanner (Morpheus Co., Seoul, Korea). Methods: The sample comprised 30 subjects aged 24.34 years (mean $29.0{\pm}2.5$ years). To test the correlation between direct and 3D image measurements, 21 landmarks were labeled on the face of each subject. Sixteen direct measurements were obtained twice using digital calipers; the same measurements were then made on two sets of 3D facial images. The mean values of measurements obtained from both methods were compared. To investigate the precision, a comparison was made between two sets of measurements taken with each method. Results: When comparing the variables from both methods, five of the 16 possible anthropometric variables were found to be significantly different. However, in 12 of the 16 cases, the mean difference was under 1 mm. The average value of the differences for all variables was 0.75 mm. Precision was high in both methods, with error magnitudes under 0.5 mm. Conclusions: 3D scanning images have high levels of precision and fairly good congruence with traditional anthropometry methods, with mean differences of less than 1 mm. 3D surface imaging using the Morpheus 3D$^{(R)}$ scanner is therefore a clinically acceptable method of recording facial integumental data.