• Title/Summary/Keyword: Surface hardening

Search Result 577, Processing Time 0.029 seconds

Material Analysis and Conservation Treatment of Sangryangmun in Jinnamgwan, Yeosu (여수 진남관 상량문의 재질분석 및 보존처리)

  • Imn, Se Yeon;Yu, Ji A;Lee, Jae Sung;Jeong, Hee Won
    • Journal of Conservation Science
    • /
    • v.36 no.3
    • /
    • pp.213-224
    • /
    • 2020
  • This research conducted a component analysis and conservation treatment of "Sangryangmun," a material which had been written in 1965 and was discovered during the repair project for "Jinnamgwan" in Yeosu. The "Sangryangmun" has been stored in a cylindrical metal storage; however, defects, discolorations, hardening, and damages caused by pollutants were found. Based on the XRF analysis, rust in the cylindrical metal storage, which was made of Cu, was stuck on the surface of the "Sangryangmun". Using FT-IR and Pyrolysis-GC/MS analyses, carbonyl and compounds of fatty acids were detected; the organic material on the surface of the "Sangryangmun" was identified to have belonged to oil-based components. Therefore, it was presumed that the bast fibers of a mulberry was used in the paper. To determine the conservation materials, component analysis, condition survey, and preliminary test on adhesives were conducted. Moreover, the missing parts and partial linings were filled using mulberry-fiber paper, methyl cellulose, etc.

Effect of End-coating Around Pith of Heavy Timbers of Red Pine and Korean Pine on High-temperature and Low-humidity Drying Characteristics (중심부분 엔드코팅처리가 국산 소나무와 잣나무 중목구조부재의 고온저습건조 특성에 미치는 영향)

  • Lee, Chang-Jin;Lee, Nam-Ho;Eom, Chang-Deuk;Shin, Ik-Hyun;Park, Moon-Jae;Park, Joo-Saeng
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.3
    • /
    • pp.221-233
    • /
    • 2013
  • This study was performed to identify the effect of end-coating around pith of heavy timbers of Red pine and Korean pine on high temperature and low humidity drying characteristics. Total drying times were 268 hours, and ranges of final moisture content was investigated that Red Pine 9.2% to 10.8% MC for square and round timber, in case of Korean Pine 15.0% to 22.0% MC for square timber, 12.8% to 20.4% MC for round timber. Moisture content distribution of Red Pine was a uniform, but part of high moisture content was found in Korean Pine. In case of Korean pine, the surface checks were occurred more severe than in case of Red pine, and end-coating treatment were investigated to be ineffective on surface check. The internal checks were only formed on the two timbers. The value of the case hardenings was investigated that the ranges 3.7% to 9.1% for Red pine. In case of Korean pine, on the other hand, the case hardenings presence a few as 20.9% to 35.8%.

A Study on the Development of Self-Healing Smart Concrete Using Microbial Biomineralization (미생물의 생체광물형성작용을 이용한 자기치유 스마트 콘크리트 개발에 관한 기초연구)

  • Kim, Wha-Jung;Kim, Sung-Tae;Park, Sung-Jin;Ghim, Sa-Youl;Chun, Woo-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.501-511
    • /
    • 2009
  • This study was conducted to develop self-healing ability of concrete so that inspection could be available even in the event of minute cracks without complex works at any time for more economic concrete structure maintenance and longevity. A completely different method has been carried out in comparison with many of similar researches on self-healing concrete. This is a basic study on the development of self-healing concrete using microbial biomineralization. Compounds were generated except for cells by precipitation reaction of CaC$O_3$ during the microbial metabolism and we examined the use as a binder that hardens the surface of sand using biomineralization that Sporosarcina pasteurii precipitates CaC$O_3$. In result, the formation of new mineral and hardening of sand surface could be verified partly, and it was available for cracks to be repaired by calcite with organic (microorganism) and inorganic (CaC$O_3$) complex structure through the basic experiment a little bit. Therefore the use of biomineralization by this sort of microbial metabolism for concrete structure helps to develop absolute repair-concrete like this concrete with microorganism. The effect of microbial application will be one of the most important research tasks having influence on not only repair for concrete structure but also development of new materials able to reduce environmental problems.

Effects of plasma ion nitriding temperature using DC glow discharge on improvement of corrosion resistance of 304 stainless steel in seawater (천연 해수에서 304 스테인리스강의 내식성에 미치는 DC glow 방전 플라즈마 이온질화처리 온도의 영향)

  • Chong, Sang-Ok;Park, Il-Cho;Kim, Seong-Jong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.238-244
    • /
    • 2017
  • Plasma ion nitriding has been widely used in various industries to improve the mechanical properties of materials, especially stainless steels by increasing the surface hardness. It has the particular advantages of less distortion compared to that in the case of hardening of steel, gas nitriding, and carburizing; in addition, it allows treatment at low-temperatures, and results in a high surface hardness and improved corrosion resistance. Many researchers have demonstrated that the plasma ion nitriding process should be carried out at temperatures of below $450^{\circ}C$ to improve corrosion resistance via the formation of the expanded austenite phase(S-phase). Most experimentals studied to date have been carried out in chloride solutions like HCl or NaCl. However, the electrochemical characteristics for the chloride solutions and natural seawater differ. Hence, in this work, plasma ion nitriding of 304 stainless steels was performed at various temperatures, and the electrochemical characteristics corresponding to the different process temperatures were analyzed for the samples in natural seawater. Finally the optimum plasma ion nitriding temperature that resulted in the highest corrosion resistance was determined.

A Process Optimization of HVOF on ALBC3 by Experiments Design (실험계획법을 이용한 ALBC3에 대한 고속화염용사의 최적 공정 설계)

  • Kim, Young-Moon;Lim, Byung-Chul;Kim, Min-Tae;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.448-453
    • /
    • 2016
  • Erosion and abrasion caused by cavitation damage occur in fluid equipment, such as ships or impellers. Similarly, the equipment damage from noise and vibration can shorten its life. This study analyzed the importance of the parameter characteristics of the process optimization of HVOF (High Velocity Oxygen Fuel spraying), which is generally used in a variety of industries for enhancing the resistibility from the cavitation phenomenon. The surface of the ALBC3 substrate was coated with an amorphous powder as a filler metal according to the experimental design using the Taguchi method, and then the characteristics with each parameter were analyzed using a porosity measurement test. The optimal process conditions was a combustion pressure of 80psi, coating distance of 270mm, gun speed of 200mm/s, and powder feed rate of 25g/min as a result of the HVOF coating by applying the experimental design. The combustion pressure, coating distance and powder feed rate were more than 25% and indicated a similar contribution rate, but the contribution rate of the gun speed was 19%, which was slightly less than the others. The contribution rate with each parameter was only slightly significant. On the other hand, all four parameters were found to be important in the contribution rate aspects of the HVOF coating process.

Evaluation of the Properties of an Environment-Friendly De-icing Agent Based on Industrial By-Products (산업부산물을 활용한 친환경제설제의 특성평가)

  • Heo, Hyung-Seok;Lee, Byung-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.132-139
    • /
    • 2017
  • A huge amount of de-icing agent is sprayed during winter to promote traffic safety in cold regions, and the quantity of de-icing agent sprayed has increased each year. The main ingredients in commonly used de-icing agents are chlorides, such as calcium chloride($CaCl_2$) and sodium chloride(NaCl). While calcium chloride is mostly used in Korea and sodium chloride is usually used in the U.S. and Japan, all de-icing agents include chloride ions. The chlorides included in sprayed calcium chloride-based de-icing agents have severe adverse effects, including the corrosion of reinforcing steels through salt damage by infiltrating into road structures, reduced structural performance of pavement or damage to bridge structures, and surface scaling, in combination with freezing damage in winter, as well as water pollution. In addition, the deterioration of paved concrete road surface that occurs after the use of calcium chloride-based de-icing agent accelerates the development of visual problems with traffic structures. Therefore, the present study was performed to prepare an environment-friendly liquid de-icing agent through a reaction between waste organic acids and calcium-based by-products, which are industrial by-products, and to analyze the properties of the de-icing agent in order to evaluate its applicability to road facilities.

Quantitative Analysis of Tooth Mineral Content by High Resolution Micro-computed Tomography

  • Song, Dae-Sung;Kim, Jung-Woo;Hwang, Hee-Su;Oh, Sin-Hye;Song, Ju Han;Kim, Il-Shin;Hwang, Yun-Chan;Koh, Jeong-Tae
    • International Journal of Oral Biology
    • /
    • v.42 no.4
    • /
    • pp.155-161
    • /
    • 2017
  • Teeth and bones are highly mineralized tissues containing inorganic minerals such as calcium phosphate, and a growing number of evidences show that their mineral content is associated with many diseases. Although the quantification of mineral contents by micro-computed tomography(micro- CT) has been used in diagnosis and evaluation for treating bone diseases, its application for teeth diseases has not been well established. In this study, we attempted to estimate a usefulness of a high-resolution micro-CT in analysis of human teeth. The teeth were scanned by using the Skyscan 1172 micro-CT. In order to measure tooth mineral content, beam hardening effect of the machine was corrected with a radiopaque iodine-containing substance, iodoacetamide. Under the maximum resolution of $6.6{\mu}m$, X-ray densities in teeth and hydroxyapatite standards were obtained with Hounsfield unit (HU), and they were then converted to an absolute mineral concentration by a CT Analyzer software. In enamel layer of cusp area, the mean mineral concentration was about $2.14mg/mm^3$ and there was a constant mineral concentration gradient from the enamel surface to the dentinoenamel junction. In the dentin of middle 1/3 of tooth, the mean mineral concentration was approximately $1.27mg/mm^3$ and there was a constant mineral concentration gradient from the outer of root to the pulp side, ranging from 1.3 to $1.06mg/mm^3$. In decay region of dentin, the mineral content was gradually decreased from the intact inner side to the decayed surface. These results suggest that high-resolution micro-CT can be as a useful tool for non-invasive measurement of mineral concentration in teeth.

Study on the Development and Property of Epoxy Putty with Excellent Low Shrinkage and Cutting Force Using Mercaptan Type and Diamine Type (Mercaptan계와 Diamine계를 이용한 저수축·절삭력이 우수한 Epoxy Putty의 개발 및 물성에 관한 연구)

  • Oh, Seung-Jun;Wi, Koang-Chul
    • Journal of Adhesion and Interface
    • /
    • v.16 no.4
    • /
    • pp.137-145
    • /
    • 2015
  • This study aimed to develop epoxy putty as a multi-purpose connection and restoration material that can be used for material-specific restoration work such as metal, wood, ceramics, earthenware and stone artifacts by replacing synthetic resins currently being used for preservation treatment of cultural assets. Existing synthetic resins have the issue of cutting force resulting from high strength, deflection resulting from long hardening time, contaminating the surface of artifacts through staining on tools or gloves and need for re-treatment resulting from material discoloration. Accordingly, paste type restoration material most widely being used in the field of cultural assets preservation treatment was selected and examined the property to select it as an object of comparison. Based on such process, epoxy putty was developed according to the kind of agent, hardener and filler. For the purpose of solving the issues of existing material and allowing the epoxy putty developed to have similar property, property experiments were conducted by selecting agents and hardeners with different characteristics and conditions. The study findings showed that both kinds are paste type that improved work convenience and deflection issue as a result of their work time of within 5~10 minutes that are about 3~10 times shorter than that of existing material. In regards to wear rate for increasing cutting force, it improved by about 3 times, thereby allowing easy molding. For the purpose of improving the issue of surface contamination that occurs during work process, talc and micro-ballon were added as filler to reduce the issue of stickiness and staining on hand. Furthermore, a multi-purpose restoration material with low shrinkage, low discoloration and high cutting force was developed with excellent coloring, lightweight and cutting force features.

Implementation of Barcelona Basic Model into TOUGH2-MP/FLAC3D (TOUGH2-MP/FLAC3D의 Barcelona Basic Model 해석 모듈 개발)

  • Lee, Changsoo;Lee, Jaewon;Kim, Minseop;Kim, Geon Young
    • Tunnel and Underground Space
    • /
    • v.30 no.1
    • /
    • pp.39-62
    • /
    • 2020
  • In this study, Barcelona Basic Model (BBM) was implemented into TOUGH2-MP/FLAC3D for the numerical analysis of coupled thermo-hydro-mechanical (THM) behavior of unsaturated soils and the prediction of long-term behaviors. Similar to the methodology described in a previous study for the implementation of BBM into TOUGH-FLAC, the User Defined Model (UDM) of FLAC based on the Modified Cam Clay Model (MCCM) and the FISH function of FLAC3D were used to extend the existing MCCM module in FLAC3D for the implementation of BBM into TOUGH2-MP/FLAC3D. In the developed BBM module in TOUGH2-MP/FLAC3D, the plastic strains due to change in suction increase (SI) in addition to mean effective stress are calculated. In addition to loading-collapse (LC) yield surface, suction increase (SI) yield surface is changed by hardening rules in the developed BBM module. Several numerical simulations were conducted to verify and validate the implementation of BBM: using an example presented in the FLAC3D manual for the standard MCCM, simulation results using COMSOL, and experimental data presented in SKB Reports. In addition, the developed BBM analysis module was validated by simultaneously performing a series of modeling tests that were performed for the validation of the Quick tools developed for the purpose of effectively deriving BBM parameters, and by comparing the Quick tools and Code_Bright results reported in a previous study.

Hardening State and Basic Properties Changes According to the Mixture Ratio of MMA Resin Used as a Waterproofing Coating Material in Concrete Bridges (콘크리트 교면용 도막방수재로 사용되는 MMA 수지의 배합비율에 따른 경화상태 및 기본 물성에 관한 연구)

  • An, Ki-Won;Kang, Hyo-Jin;Oh, Sang-Keun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.224-234
    • /
    • 2019
  • Waterproof layers are installed in civil engineering structures and bridge construction is commonly finished by applying a layer of regular or asphalt concrete above the waterproof layer. However, asphalt materials are susceptible to melting at high temperature due to its superior temperature sensitivity, and this causes the waterproofing material to melt due to the high temperature of the asphalt concrete, thereby increasing the defect occurrence rate due to the thickness reduction. In this study, tensile strength and elongation of hard and soft type of MMA(Methyl Methacrylate) applied to bridges were compared in accordance to standard performance criteria based on different mixture ratios. Results of comparative testing showed that hard MMA resin can display a satisfactory tensile strength, and soft MMA resin displays satisfactory elongation properties, but as the two resin types are separately used, neither types are able to satisfy the standard requirements outlined in KS F 4932. When the amount of the powder exceeds 56.25% of the total amount, voids are generated on the surface after curing and self leveling was impossible and a heterogeneous surface is formed. Furthermore, when the hard resin: soft resin: powder mixture ratio was set to 15g: 85g: 150g. the tensile strength was $1.5N/mm^2$ and the elongation percentage was 133% which satisfy the tensile performance of KS F 4932.