• Title/Summary/Keyword: Surface hardening

Search Result 582, Processing Time 0.025 seconds

Measurements of Residual Stress in Nitrocarburised Layer Formed in Hot Work Tool Steel (열간가공 공구강에 형성된 침질탄화층의 잔류응력 측정)

  • Oh, Do-Won;Park, Ki-Won;Lee, Jun-Boum;Lee, Sang-Yun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.4
    • /
    • pp.305-314
    • /
    • 1998
  • This study has been performed to investigate into some effects of various amounts of $CO_2$ and CO gas added to the $50%NH_3-N_2$ based gas atmosphere on microstructure, hardness, chemical analysis and residual stress in the compound and diffusion layer of AISI H13 treated by gaseous nitrocarburising process. The compound layer formed in the surface is composed of mainly ${\varepsilon}-Fe_3$(N,C) and small amount of ${\gamma}^{\prime}-Fe_4N$ and cementite. The maximum hardness value obtainable from H13 steel is shown to be 1200 Hv and the effecvtive hardening depth increases with increasing CO content from 1% to 4%. In the case of CO content over 4%, however, it decreases with increasing CO content. The composition profiles of nitrogen and carbon are found to be within the ${\varepsilon}$-phase field located above the ${\varepsilon}+{\gamma}^{\prime}$ phase field in the Fe-N-C diagram. It is shown that the maximum value of compressive residual stress of H13 steel treated in atmospheres of $50%NH_3-(2,4)%CO_2-N_2-CO$ gas mixture is $48kg/mm^2$ and the depth to which residual stress is in Compressive state is $90{\mu}m$ for the atmosphere $50%NH_3-45%N_2-4%CO_2-1%CO$ gas mixture. It is consequently important to control the maximum value and size of compressive residual stress region in order to obtain desirable mechanical properties.

  • PDF

Microstructure and Mechanical Properties of AA1050/AA6061/AA1050 Complex Sheet Fabricated by Roll Bonding Process (냉간압연접합법에 의해 제조된 AA1050/AA6061/AA1050 층상 복합판재의 미세조직 및 기계적 성질)

  • Ahn, Moo-Jong;You, Hyo-Sang;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.26 no.7
    • /
    • pp.388-392
    • /
    • 2016
  • A cold roll-bonding process was applied to fabricate an AA1050/AA6061/AA1050 laminate complex sheet. Two AA1050 and one AA6061 sheets of 2 mm thickness, 40 mm width and 300 mm length were stacked up after surface treatment that included degreasing and wire brushing; material was then reduced to a thickness of 3 mm by one-pass cold rolling. The laminate sheet bonded by the rolling was further reduced to 1.2 mm in thickness by conventional rolling. The rolling was performed at ambient temperature without lubricant using a 2-high mill with a roll diameter of 210 mm. The rolling speed was 5.0 m/sec. The AA1050/AA6061/AA1050 laminate complex sheet fabricated by roll bonding was then hardened by natural aging T4) and artificial aging (T6) treatments. The microstructures of the as-roll bonded and the age hardened Al complex sheets were revealed by optical microscope observation; the mechanical properties were investigated by tensile testing and hardness testing. The strength of the as-roll bonded complex sheet was found to increase by 2.9 times compared to that value of the starting material. In addition, the hardness of the complex sheets increased with cold rolling for AA1050 and age-hardening treatment for AA6061, respectively. After heat treatment, both AA1050 and AA6061 showed typical recrystallization structures in which the grains were equiaxed; however, the grain size was smaller in AA6061 than in AA1050.

The Processing and Characterization of Sol-Gel Derived Ferroelectric PMN Powders and Thin Films (졸-겔법에 의한 강유전성 PMN 분말 및 박막의 제조와 특성)

  • Hwang, Jin-Myeong;Jang, Jun-Yeong;Eun, Hui-Tae
    • Korean Journal of Materials Research
    • /
    • v.8 no.12
    • /
    • pp.1138-1145
    • /
    • 1998
  • The sliding wear behavior of Ni-base hardfacing alloy, Deloro 50, was investigated at the contact stresses of 15ksi and 30ksi under the various wear environments. In air at room temperature, Deloro 50 showed lower wear resistance than Stellite 6 even at 15ksi due to the occurrence of severe adhesive wear. This seems to be caused by the lower hardness and work- hardening rate of Deloro 50 than those of Stellite 6. In water at room temperature, Deloro 50 showed as good wear resistance as Stellite 6 at 15ksi. It was considered to be due to that water could effectively prevent metal to metal contact through contacting asperities. However, Deloro 50 showed severe adhesive wear at 30ksi in water at room temperature. It seems to be that the water could not suppress adhesion wear at 30ksi. At $300^{\circ}C$ in air, Deloro 50 exhibited higher wear resistance than Stellite 6 even at 30ksi. It was considered that the oxide glaze layers formed on wear surface during sliding, effectively prevented direct metal-to-metal contacts.

  • PDF

Behavior of Soft Ground Throughout Mock-up Test Using Low Self Weight Banking Method (경량성토 모형시험을 통한 연약지반상의 성토제체의 거동)

  • Kim, Sang Chel
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.85-91
    • /
    • 2011
  • This study aims at evaluating feasibility of Bottom ash-mixed Foam Cement Banking(BFCB) Method on the enhancement of soft soil, which is developed to reduce self-weight of banking by applying bottom ash and foam. to cement slurry. In order to measure the behavior of soil when BFCB layer was covered to soft ground, a testing equipment for mock-up test was fabricated and phased loads were applied up to measurement of yielding and ultimate strengths as well as movement of ground particles. In addition, these measured values such as settlement and heaving were compared with ones of surface-hardening method prevailing on soil improvement. As the result through mock-up test, BFCB showed lower values of ground deformation, while wider range of deformation was observed in compare to the other method. And settlement and heaving were measured lower, which implies the method developed is very effective to applicability of soft ground.

Behaviour of the Fretting Wear and Corrosion Characteristics on a Hinge Material (힌지재료의 부식특성 및 찰과마멸 거동)

  • Kwak Nam-In;Lim Uh-Joh;Lee Jong-Rark
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.3 s.8
    • /
    • pp.39-44
    • /
    • 1999
  • In the study, corrosion characteristics under various corrosion environments(neutral solution, acid solution), for various hinge materials(SM20C, BsC3 and STC4H), were investigated by immersion test, and the behaviour of fretting wear under atmosphere was studied. In immersion test, corrosion potential of those materials showed to be noble in the sequence of $0.5\%HNO_3$> underground water> $0.5\%\;H_2SO_4$ solution, and potential of a sole material, except BsC3, was more noble than these of mixed materials. In same material SM20C, the fretting wear loss of rotary materials increased about 1.9 times to that of moving materials, because of surface hardening by frictional force.

  • PDF

Improvement of wear resistance of Zircaloy-4 by nitrogen implantation

  • Han, Jeon G.;Lee, Jae s. J;Kim, Hyung J.;Keun Song;Park, Byung H.;Guoy Tang;Keun Song
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S2
    • /
    • pp.100-105
    • /
    • 1995
  • Nitrogen implantation process has been applied for improvement of wear resistance of Zircaloy-4 fuel cladding materials. Nitrogen was implanted at 120keV to a total dose range of $1\times 10^{17}$ions/$\textrm{cm}^2$ to $1\times 10^{18}$ions/$\textrm{cm}^2$ at various temperatures between $270^{\circ}C$ and $671^{\circ}C$. The microstructure changes by nitrogen implantation were analyzed by XRD and AES and wear behavior was evaluated by performing ball-on-disc type wear testing at various loads and sliding velocities under unlubricated condition. Nitrogen implantation produced ZrNx nitride above $3\times 10^{17}$ions/$\textrm{cm}^2$ as well as heavy dislocations, which resluted in an increase in microhardness of the implanted surface of up to 1400 $H_k$ from 200 $H_k$ of unimplanted substrate. Hardness was also found to be increased with increasing implantation temperature up to 1760 $H_k$ at $620^{\circ}C$. The wear resistance was greatly improved as total ion dose and implantation temperature increased. The effective enhancement of wear resistance at high dose and temperature is believed to be due to the significant hardening associated with high degree of precipitation of Zr nitrides and generation of prismatic dislocation loops.

  • PDF

FE Simulation of Axial Crushing Test for AZ31 Tube Considering Tension-Compression Asymmetry (압축-인장 비대칭을 고려한 AZ31 튜브의 압괴해석)

  • Yoon, Jong-Hun;Lee, Jung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.997-1002
    • /
    • 2012
  • With the increasing demand for lightweight materials to reduce fuel consumption, especially in the transportation industry, magnesium alloys are being widely studied. However, there are several limitations to the large-scale application of magnesium alloys in a structure because of their low formability and strong anisotropy. In order to take into account both the strong anisotropy and tension-compression asymmetry of AZ31 sheet alloy, the Cazacu-Plunkett-Barlat yield criterion (Cazacu, 2006) was adopted in material modeling. The variation of the anisotropic coefficients that describe the yield surface evolution of AZ31 is optimized using an interpolation function based on specific calibration results. It generates continuous yield surfaces, which makes it possible to describe different hardening rates in tension and compression as well as the tension-compression asymmetry of magnesium alloys. The performance of the CPB06 yield criterion for simulating an axial crushing test was tested and compared with that of the Hill (1948) yield criterion.

IR Camera Technique Application for Evaluation of Gas Turbine Blades Covering Integrity (가스터빈의 코팅층 건정성 평가를 위한 적외선 열화상 카메라 기법 활용)

  • Kim J.Y.;Yang D.J.;Choi C.J.;Park S.G.;Ahn Y.S.;Jeong G.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.192-196
    • /
    • 2005
  • Key part of main equipment in a gas turbine may be likely to be damaged due to operation under high temperature, high pressure, high-speed rotation, etc. Accordingly, the cost for maintenance increases and the damaged parts may cause generation to stop. The number of parts for maintenance also increases, but diagnostics technology fur the maintenance actually does not catch up with the demand. Blades are made of precipitation hardening Ni superalloy IN738 and the like for keeping hot strength. The surface of a blade is thermal-sprayed, using powder with main compositions such as Ni, Cr, Al, etc. in order to inhibit hot oxidation. Conventional regular maintenance of the coating layer of a blade is made by FPI (Fluorescent Penetrant Inspection) and MTP (Magnetic Particle Testing). Such methods, however, are complicated and take long time and also require much cost. In this study, defect diagnostics were tested for the coating layer of an industrial gas turbine blade, using an infraredthermography camera. Since the infrared thermography method can check a temperature distribution on a wide range of area by means of non-contact, it can advantageously save expenses and time as compared to conventional test methods. For the infrared thermography method, however, thermo-load must be applied onto a tested specimen and it is difficult to quantify the measured data. To solve the problems, this essay includes description about producing a specimen of a gas turbine blade (bucket), applying thermo-load onto the produced specimen, photographing thermography images by an infrared thermography camera, analyzing the thermography images, and pre-testing for analyzing defects on the coating layer of the gas turbine blade.

  • PDF

Experimental observation and numerical simulation of cement grout penetration in discrete joints

  • Lee, Jong-Won;Kim, Hyung-Mok;Yazdani, Mahmoud;Lee, Hangbok;Oh, Tae-Min;Park, Eui-Seob
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.259-266
    • /
    • 2019
  • This paper presents a comparison between experimental measurements and numerical estimations of penetration length of a cement grout injected in discrete joints. In the experiment, a joint was generated by planar acryl plates with a certain separation distance (; aperture) and was designed in such a way to vary the separation distances. Since a cement grout was used, the grout viscosity can be varied by controlling water-cement (W/C) ratios. Throughout these experiments, the influence of joint aperture, cement grout viscosity, and injection rate on a penetration length in a discrete joint was investigated. During the experiments, we also measured the time-dependent variation of grout viscosity due to a hardening process. The time-dependent viscosity was included in our numerical simulations as a function of elapsed time to demonstrate its impact on the estimation of penetration length. In the numerical simulations, Bingham fluid model that has been known to be applicable to a viscous cement material, was employed. We showed that the estimations by the current numerical approach were well comparable to the experimental measurements only in limited conditions of lower injection rates and smaller joint apertures. The difference between two approaches resulted from the facts that material separation (; bleeding) of cement grout, which was noticeable in higher injection rate and there could be a significant surface friction between the grout and joint planes, which are not included in the numerical simulations. Our numerical simulation, meanwhile, could well demonstrate that penetration length can be significantly over-estimated without considering a time-dependency of viscosity in a cement grout.

Water-induced changes in mechanical parameters of soil-rock mixture and their effect on talus slope stability

  • Xing, Haofeng;Liu, Liangliang;Luo, Yong
    • Geomechanics and Engineering
    • /
    • v.18 no.4
    • /
    • pp.353-362
    • /
    • 2019
  • Soil-rock mixture (S-RM) is an inhomogeneous geomaterial that is widely encountered in nature. The mechanical and physical properties of S-RM are important factors contributing towards different deformation characteristics and unstable modes of the talus slope. In this paper, the equivalent substitution method was employed for the preparation of S-RM test samples, and large-scale triaxial laboratory tests were conducted to investigate their mechanical parameters by varying the water content and confining pressure. Additionally, a simplified geological model based on the finite element method was established to compare the stability of talus slopes with different strength parameters and in different excavation and support processes. The results showed that the S-RM samples exhibit slight strain softening and strain hardening under low and high water content, respectively. The water content of S-RM also had an effect on decreasing strength parameters, with the decrease in magnitude of the cohesive force and internal friction angle being mainly influenced by the low and high water content, respectively. The stability of talus slope decreased with a decrease in the cohesion force and internal friction angle, thereby creating a new shallow slip surface. Since the excavation of toe of the slope for road construction can easily cause a landslide, anti-slide piles can be used to effectively improve the slope stability, especially for shallow excavations. But the efficacy of anti-slide piles gradually decreases with increasing water content. This paper can act as a reference for the selection of strength parameters of S-RM and provide an analysis of the instability of the talus slope.