• 제목/요약/키워드: Surface grain growth

검색결과 351건 처리시간 0.027초

The Substitution of Inkjet-printed Gold Nanoparticles for Electroplated Gold Films in Electronic Package

  • 장선희;강성구;김동훈
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.25.1-25.1
    • /
    • 2011
  • Over the past few decades, metallic nanoparticles (NPs) have been of great interest due to their unique mesoscopic properties which distinguish them from those of bulk metals; such as lowered melting points, greater versatility that allows for more ease of processability, and tunable optical and mechanical properties. Due to these unique properties, potential opportunities are seen for applications that incorporate nanomaterials into optical and electronic devices. Specifically, the development of metallic NPs has gained significant interest within the electronics field and technological community as a whole. In this study, gold (Au) pads for surface finish in electronic package were developed by inkjet printing of Au NPs. The microstructures of inkjet-printed Au film were investigated by various thermal treatment conditions. The film showed the grain growth as well as bonding between NPs. The film became denser with pore elimination when NPs were sintered under gas flows of $N_2$-bubbled through formic acid ($FA/N_2$) and $N_2$, which resulted in improvement of electrical conductance. The resistivity of film was 4.79 ${\mu}{\Omega}$-cm, about twice of bulk value. From organic anlayses of FTIR, Raman spectroscopy, and TGA, the amount of organic residue in the film was 0.43% which meant considerable removal of the solvent or organic capping molecules. The solder ball shear test was adopted for solderability and shear strength value was 820 gf (1 gf=9.81 mN) on average. This shear strength is good enough to substitute the inkjet-printed Au nanoparticulate film for electroplating in electronic package.

  • PDF

고내식성의 신 마그네슘 코팅막 제작 (Preparation of New Corrosive Resistive Magnesium Coating Films)

  • 이명훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권5호
    • /
    • pp.103-113
    • /
    • 1996
  • The properties of the deposited film depend on the deposition condition and these, in turn depend critically on the morphology and crystal orientation of the films. Therefore, it is important to clarify the nucleation occurrence and growth stage of the morphology and orientation of the film affected by deposition parameters, e.g. the gas pressure and bias voltage etc. In this work, magnesium thin flims were prepared on cold-rolled steel substrates by a thermo-eletron activation ion plating technique. The influence of nitrogen gas pressure and substrate bias voltage on their crystal orientation and morphology of the coated films were investigated by scanning electron microscopy (SEM) and X-ray diffraction, respectively. The diffraction peaks of magnesium film became less sharp and broadened with the increase of nitrogen gas pressure. With an increase in nitrogen gas pressure, flim morphology changed from colum nar to granular structure, and surface crystal grain-size decreased. The morphology of films depended not only on gas pressure but also on bias voltage, i.e., the effect of increasing bias voltage was similar to that of decreasing gas pressure. The effect of crystal orientation and morphology of magnesium films on corrosion behaviors was estimated by measuring anodic polarization curves in deaerated 3%NaCl solution. Magnesium, in general, has not a good corrosion resistance in all environments. However, these magnesium films prepared by changing nitrogen gas pressure showed good corrosion resistance. Among the films, magnesium films which exhibited granular structure had the highest corrosion resistance. The above phenomena can be explained by applying the effects of adsorption, occlusion and ion sputter of nitrogen gas.

  • PDF

산소분압비에 따른 ZnO 박막의 성장특성 (Growth Properties of Sputtered ZnO Thin Films Affected by Oxygen Partial Pressure Ratio)

  • 강만일;김문원;김용기;류지욱;장한오
    • 한국진공학회지
    • /
    • 제17권3호
    • /
    • pp.204-210
    • /
    • 2008
  • 산소분압비에 따른 ZnO 박막의 성장특성을 알아보기 위해 RF 스퍼터링 시스템을 이용하여 $0%{\sim}30%$의 산소분압비로 박막을 제작하였다. 위상변조방식의 분광타원계를 이용하여 $1.5{\sim}3.8eV$ 범위에 걸쳐 타원상수를 측정하였고, TL 분산관계식을 이용하여 최적맞춤한 결과 박막과 표면기칠기층의 두께, void 비율을 알 수 있었고, ZnO 알갱이의 크기는 산소분압비의 증가에 따라 그 크기가 작아짐을 알 수 있었다. 산소분압비에 따른 ZnO 박막의 밴드 갭은 산소유입량의 증가에 따라 증가하여 ZnO 박막의 광흡수 특성이 산소분압비에 크게 의존함을 알았고, 산소분압비의 증가는 결정의 불완전성을 증가시키는 것으로 나타났다.

Effect of Plasma Pretreatment on Superconformal Cu Alloy Gap-Filling of Nano-scale Trenches

  • 문학기;이정훈;이수진;윤재홍;김형준;이내응
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.53-53
    • /
    • 2011
  • As the dimension of Cu interconnects has continued to reduce, its resistivity is expected to increase at the nanoscale due to increased surface and grain boundary scattering of electrons. To suppress increase of the resistivity in nanoscale interconnects, alloying Cu with other metal elements such as Al, Mn, and Ag is being considered to increase the mean free path of the drifting electrons. The formation of Al alloy with a slight amount of Cu broadly studied in the past. The study of Cu alloy including a very small Al fraction, by contrast, recently began. The formation of Cu-Al alloy is limited in wet chemical bath and was mainly conducted for fundamental studies by sputtering or evaporation system. However, these deposition methods have a limitation in production environment due to poor step coverage in nanoscale Cu metallization. In this work, gap-filling of Cu-Al alloy was conducted by cyclic MOCVD (metal organic chemical vapor deposition), followed by thermal annealing for alloying, which prevented an unwanted chemical reaction between Cu and Al precursors. To achieve filling the Cu-Al alloy into sub-100nm trench without overhang and void formation, furthermore, hydrogen plasma pretreatment of the trench pattern with Ru barrier layer was conducted in order to suppress of Cu nucleation and growth near the entrance area of the nano-scale trench by minimizing adsorption of metal precursors. As a result, superconformal gap-fill of Cu-Al alloy could be achieved successfully in the high aspect ration nanoscale trenches. Examined morphology, microstructure, chemical composition, and electrical properties of superfilled Cu-Al alloy will be discussed in detail.

  • PDF

아르곤 가스의 주입이 붕소 도핑 다이아몬드 전극의 특성에 미치는 효과 (Effect of Argon Addition on Properties of the Boron-Doped Diamond Electrode)

  • 최용선;이영기;김정열;이유기
    • 한국재료학회지
    • /
    • 제28권5호
    • /
    • pp.301-307
    • /
    • 2018
  • A boron-doped diamond(BDD) electrode is attractive for many electrochemical applications due to its distinctive properties: an extremely wide potential window in aqueous and non-aqueous electrolytes, a very low and stable background current and a high resistance to surface fouling. An Ar gas mixture of $H_2$, $CH_4$ and trimethylboron (TMB, 0.1 % $C_3H_9B$ in $H_2$) is used in a hot filament chemical vapor deposition(HFCVD) reactor. The effect of argon addition on quality, structure and electrochemical property is investigated by scanning electron microscope(SEM), X-ray diffraction(XRD) and cyclic voltammetry(CV). In this study, BDD electrodes are manufactured using different $Ar/CH_4$ ratios ($Ar/CH_4$ = 0, 1, 2 and 4). The results of this study show that the diamond grain size decreases with increasing $Ar/CH_4$ ratios. On the other hand, the samples with an $Ar/CH_4$ ratio above 5 fail to produce a BDD electrode. In addition, the BDD electrodes manufactured by introducing different $Ar/CH_4$ ratios result in the most inclined to (111) preferential growth when the $Ar/CH_4$ ratio is 2. It is also noted that the electrochemical properties of the BDD electrode improve with the process of adding argon.

Cyclic Voltammetry를 이용한 CuInSe2 박막의 전기화학적 전착 연구 (Cyclic Voltammetry Study on Electrodeposition of CuInSe2 Thin Films)

  • 홍순현;이현주;김양도
    • 한국재료학회지
    • /
    • 제23권11호
    • /
    • pp.638-642
    • /
    • 2013
  • Chalcopyrite $CuInSe_2$(CIS) is considered to be an effective light-absorbing material for thin film photovoltaic solar cells. CIS thin films have been electrodeposited onto Mo coated and ITO glass substrates in potentiostatic mode at room temperature. The deposition mechanism of CIS thin films has been studied using the cyclic voltammetry (CV) technique. A cyclic voltammetric study was performed in unitary Cu, In, and Se systems, binary Cu-Se and In-Se systems, and a ternary Cu-In-Se system. The reduction peaks of the ITO substrate were examined in separate $Cu^{2+}$, $In^{3+}$, and $Se^{4+}$ solutions. Electrodeposition experiments were conducted with varying deposition potentials and electrolyte bath conditions. The morphological and compositional properties of the CIS thin films were examined by field emission scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy (EDS). The surface morphology of as-deposited CIS films exhibits spherical and large-sized clusters. The deposition potential has a significant effect on the film morphology and/or grain size, such that the structure tended to grow according to the increase of the deposition potential. A CIS layer deposited at -0.6 V nearly approached the stoichiometric ratio of $CuIn_{0.8}Se_{1.8}$. The growth potential plays an important role in controlling the stoichiometry of CIS films.

Tailoring the properties of spray deposited V2O5 thin films using swift heavy ion beam irradiation

  • Rathika, R.;Kovendhan, M.;Joseph, D. Paul;Pachaiappan, Rekha;Kumar, A. Sendil;Vijayarangamuthu, K.;Venkateswaran, C.;Asokan, K.;Jeyakumar, S. Johnson
    • Nuclear Engineering and Technology
    • /
    • 제52권11호
    • /
    • pp.2585-2593
    • /
    • 2020
  • Swift heavy ion (SHI) beam irradiation can generate desirable defects in materials by transferring sufficient energy to the lattice that favours huge possibilities in tailoring of materials. The effect of Ag15+ ion irradiation with energy 200 MeV on spray deposited V2O5 thin films of thickness 253 nm is studied at various ion doses from 5 × 1011 to 1 × 1013 ions/㎠. The XRD results of pristine film confirmed orthorhombic structure of V2O5 and its average crystallite size was found to be 20 nm. The peak at 394 cm-1 in Raman spectra confirmed O-V-O bonding of V2O5, whereas 917 cm-1 arise because of distortion in stoichiometry by a loss of oxygen atoms. Raman peaks vanished completely above the ion fluence of 5 × 1012 ions/㎠. Optical studies by UV-Vis spectroscopy shows decrement in transmittance with an increase in ion fluence up to 5 × 1012 ions/㎠. The red shift is observed both in the direct and indirect band gaps until 5 × 1012 ions/㎠. The surface topography of the pristine film revealed sheath like structure with randomly distributed spherical nano-particles. The roughness of film decreased and the density of spherical nanoparticles increased upon irradiation. Irradiation improved the conductivity significantly for fluence 5 × 1011 ions/㎠ due to band gap reduction and grain growth.

PLD법으로 PES 기판 위에 제작된 Mg0.1Zn0.9O 박막의 제작 조건에 따른 특성 (The Characteristics of Mg0.1Zn0.9O Thin Films on PES Substrate According to Fabricated Conditions by PLD)

  • 김상현;이현민;장낙원;박미선;이원재;김홍승
    • 한국전기전자재료학회논문지
    • /
    • 제26권8호
    • /
    • pp.602-607
    • /
    • 2013
  • Concern for the TOS (Transparent Oxide Semiconductor) is increasing with the recent increase in interest for flexible device. Especially MgZnO has attracted a lot of attention. $Mg_xZn_{1-x}O$, which ZnO-based wideband-gap alloys is tuneable the band-gap ranges from 3.36 eV to 7.8 eV. In particular, the flexible substrate, the crystal structure of the amorphous as well as the surface morphology is not good. So research of MgZnO thin films growth on flexible substrate is essential. Therefore, in this study, we studied on the effects of the oxygen partial pressure on the structural and crystalline of $Mg_{0.1}Zn_{0.9}O$ thin films. MgZnO thin films were deposited on PES substrate by using pulsed laser deposition. We used XRD and AFM in order to observe the structural characteristics of MgZnO thin films. UV-visible spectrophotometer was used to get the band gap and transmittance. Crystallization was done at a low oxygen partial pressure. The crystallinity of MgZnO thin films with increasing temperature was improved, Grain size and RMS of the films were increased. MgZnO thin films showed high transmittance over 80% in the visible region.

지르코늄 스폰지를 원료로 사용하여 화학증착법으로 제조된 탄화지르코늄 코팅층의 물성 (Properties of Chemical Vapor Deposited ZrC Coating Layer using by Zirconium Sponge Materials)

  • 김준규;최유열;이영우;박지연;최두진
    • 한국세라믹학회지
    • /
    • 제45권4호
    • /
    • pp.245-249
    • /
    • 2008
  • The SiC and ZrC are critical and essential materials in TRISO coated fuel particles since they act as protective layers against diffusion of metallic and gaseous fission products and provides mechanical strength for the fuel particle. However, SiC and ZrC have critical disadvantage that SiC loses chemical integrity by thermal dissociation at high temperature and mechanical properties of ZrC are weaker than SiC. In order to complement these problems, we made new combinations of the coating layers that the ZrC layers composed of SiC. In this study, after Silicon carbide(SiC) were chemically vapor deposited on graphite substrate, Zirconium carbide(ZrC) were deposited on SiC/graphite substrate by using Zr reaction technology with Zr sponge materials. The different morphologies of sub-deposited SiC layers were correlated with microstructure, chemical composition and mechanical properties of deposited ZrC films. Relationships between deposition pressure and microstructure of deposited ZrC films were discussed. The deposited ZrC films on SiC of faceted structure with smaller grain size has better mechanical properties than deposited ZrC on another structure due to surface growth trend and microstructure of sub-deposited layer.

Cracked Selenium을 이용한 CIGS 박막 셀렌화 공정에 관한 연구 (A Study on Selenization of Cu-In-Ga Precursors by Cracked Selenium)

  • 김민영;김기림;김종완;손경태;이종관;임동건
    • 한국전기전자재료학회논문지
    • /
    • 제26권7호
    • /
    • pp.503-509
    • /
    • 2013
  • In this study, $Cu(In_{1-x},Ga_x)Se_2$ (CIGS) thin films were prepared on the Mo coated soda-lime glass by the DC magnetron sputtering and a subsequent selenization process. For the selenization process, selenization rapid thermal process(RTP) with cracker cell, which was helpful to smaller an atomic of Se, was adopted. To make CIGS layer, they were then annealed with the cracked Se. Based on this selenization method, we made several CIGS thin film and investigated the effects of In deposition time, and selenization time. Through x-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and atomic force microscopy (AFM), it is found that the Mo/In/CuGa structure and the high sputtering power shows the dominant chalcopyrite structure and have a uniform distribution of the grain size. The CIGS films with the In deposition time of 5 min has the best structure due to the smooth surface. And CIGS films with the selenization time of 50 min show good crystalline growth without any voids.