• Title/Summary/Keyword: Surface geometry

Search Result 1,285, Processing Time 0.026 seconds

Polygon Reduction Algorithm for Three-dimensional Surface Visualization (3차원 표면 가시화를 위한 다각형 감소 알고리즘)

  • 유선국;이경상;배수현;김남현
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.5
    • /
    • pp.368-373
    • /
    • 2004
  • Surface visualization can be useful, particularly for internet-based education and simulation system. Since the mesh data size directly affects the downloading and operational performance, the problem that should be solved for efficient surface visualization is to reduce the total number of polygons, constituting the surface geometry as much as Possible. In this paper, an efficient polygon reduction algorithm based on Stokes' theorem, and topology preservation to delete several adjacent vertices simultaneously for past polygon reduction is proposed. The algorithm is irrespective of the shape of polygon, and the number of the polygon. It can also reduce the number of polygons to the minimum number at one time. The performance and the usefulness for medical imaging application was demonstrated using synthesized geometrical objects including plane. cube. cylinder. and sphere. as well as a real human data.

The Elastic-Plastic Contact Analysis of 3D Rough Surface of Nongaussian Height Distribution (비정규 높이분포를 가진 3차원 거친 표면의 탄.소성접촉해석)

  • 김태완;구영필;조용주
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.374-381
    • /
    • 2001
  • Surface roughness plays a significant role in friction, wear, and lubrication in machine components. Most engineering surfaces have tile nogaussian height distrubution. So, in this study, elastic-plastic contact simulations are conducted for not only gaussian surfaces but also nongaussian surfaces. Nongaussian rough surface considering the kurtosis is generated numerically. The contact simulation model takes into account the plastic deformation behaviors of asperities by setting a celing on their contact pressure at material hardness value. It will be shown that the performace variables such as real contact area fraction, plastic area fraction and average gap are sensitive to the characteristics of surface geometry according to kurtosis.

  • PDF

An innovative CAD-based simulation of ball-end milling in microscale

  • Vakondios, Dimitrios G.;Kyratsis, Panagiotis
    • Advances in Computational Design
    • /
    • v.5 no.1
    • /
    • pp.13-34
    • /
    • 2020
  • As small size and complex metal machining components demand increases, cutting processes in microscale become necessary. Ball-end milling is a commonly used finishing process, which nowadays can be applied in the microscale size. Surface quality and dimensional accuracy are two basic parameters that affect small size components in their assembly and functionality. Thus, good quality can be achieved by optimizing the cutting conditions of the procedure. This study presents a 3D simulation model of ball-end milling in microscale developed in a commercial CAD software and its optical and computing results. These carried out results are resumed to surface topomorphy, surface roughness, chip geometry and cutting forces calculations that arising during the cutting process. A great number of simulations were performed in a milling machine centre, applying the discretized kinematics of the procedure and the final results were compared with measurements of Al7075-T651 experiments.

Surface Enhanced Raman Spectroscopic Studies on Zn(Ⅱ) and Mn(Ⅲ) Tetrakis (4-N-Methyl Pyridyl) Porphyrins

  • Song, Ok-Keun;Yoon, Min-Joong;Kim, Dong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.4
    • /
    • pp.286-290
    • /
    • 1990
  • The surface enhanced Raman scatterings of Zn(Ⅱ) tetrakis (4-N-methyl pyridyl) porphyrins were studied in silver sol. Zn(Ⅱ) tetrakis (4-N-methyl pyridyl) porphyrin was found to be adsorbed on silver surface via flat-on geometry with some inhomogeneous distribution in the orientation of pyridyl groups. Both the selective enhancement of Raman modes depending on the mode character and the theoretical arguments of SERS are utilized to support the above conclusion. The surface induced substitution reaction of Mn(Ⅲ) tetrakis (4-N-methyl pyridyl) porphyrin chloride to Ag(Ⅱ) tetrakis (4-N-methyl pyridyl) porphyrin was detected via surface enhanced Raman spectrum.

Vibrational Spectroscopic Study of Benzenethiol on Silver Surface

  • Yi, Whi-Kun;Park, Cheol-Woo;Kim, Myung-Soo;Kim, Kwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.4
    • /
    • pp.291-296
    • /
    • 1987
  • Vibrational spectroscopy has been applied to the benzenethiol molecule adsorbed on the silver surface. The results of infrared and Raman spectral studies have led to the conclusion that benzenethiol is chemisorbed dissociatively on the silver surface by rupture of S-H bond and the benzenethiolate formed upon adsorption is bound to silver via its sulfur atom. It seemed more likely that benzenethiol is adsorbed as being inclined to the silver surface. On contact with oxygen, the geometry of the adsorbed species appeared to bear a resemblance to that of silver benzenethiolate salt. The infrared bands of adsorbed species remained with little decrease of intensity even after the prolonged evacuation at 673 K, indicating that benzenethiol is very strongly chemisorbred to the silver surface.

A Study on the Improvement of Transmission Error and Tooth Load Distribution using Micro-geometry of Compound Planetary Gear Reducer for Tractor Final Driving Shaft (트랙터 최종구동축용 복합유성기어 방식 감속기의 Micro-geometry를 이용한 전달 오차 및 치면 하중 분포 개선에 관한 연구)

  • Lee, Nam Gyu;Kim, Yong Joo;Kim, Wan Soo;Kim, Yeon Soo;Kim, Taek Jin;Baek, Seung Min;Choi, Yong;Kim, Young Keun;Choi, Il Su
    • Journal of Drive and Control
    • /
    • v.17 no.1
    • /
    • pp.1-12
    • /
    • 2020
  • This study was to develop a simulation model of a compound planetary gear reducer for the final driving shaft using a gear analysis software (KISSsoft, Version 2017, KISSsoft AG, Switzerland). The aim of this study is to analyze transmission error and the tooth load distribution through micro-geometry using the simulation model. The tip and root relief were modified with Micro-geometry in the profile direction, and crowning was modified with Micro-geometry in the lead direction. The transmission error was analyzed using the PPTE (Peak to Peak Transmission Error) value, and the tooth load distribution was analyzed for the concentrated stress on the tooth surface. As a result of modifying tip and relief in the profile direction, the transmission error was reduced up to 40.7%. In the case of modifying crowning in the lead direction, the tooth load was more evenly distributed than before and decreased the stress on the tooth surface. After modifying the profile direction for the 1st and 2nd planetary gear train, the bending and contact safety factors were increased by 31.7% and 17%, and 18.3% and 12.5% respectively. Moreover, the bending and safety factors after modifying lead direction were increased by 59.5% and 32.7%, respectively for the 1st planetary gear train, and 59.6% and 43.6%, respectively for the 2nd planetary gear train. In future studies, the optimal design of a compound planetary gear reducer for the final driving shaft is needed considering both the transmission error and tooth load distribution.

Analysis on Thermal Effects of Process Channel Geometry for Microchannel Fischer-Tropsch Reactor Using Computational Fluid Dynamics (전산유체역학을 이용한 Fischer-Tropsch 마이크로채널 반응기 반응채널구조에 따른 열적 효과 분석)

  • Lee, Yongkyu;Jung, Ikhwan;Na, Jonggeol;Park, Seongho;Kshetrimayum, Krishnadash S.;Han, Chonghun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.818-823
    • /
    • 2015
  • In this study, FT reaction in a microchannel was simulated using computational fluid dynamics(CFD), and sensitivity analyses conducted to see effects of channel geometry variables, namely, process channel width, height, gap between process channel and cooling channel, and gap between process channels on the channel temperature profile. Microchannel reactor considered in the study is composed of five reaction channels with height and width ranging from 0.5 mm to 5.0 mm. Cooling surfaces is assumed to be in isothermal condition to account for the heat exchange between the surface and process channels. A gas mixture of $H_2$ and CO($H_2/CO$ molar ratio = 2) is used as a reactant and operating conditions are the following: GHSV(gas hourly space velocity) = $10000h^{-1}$, pressure = 20 bar, and temperature = 483 K. From the simulation study, it was confirmed that heat removal in an FT microchannel reactor is affected channel geometry variables. Of the channel geometry variables considered, channel height and width have significant effect on the channel temperature profile. However, gap between cooling surface and process channel, and gap between process channels have little effect. Maximum temperature in the reaction channel was found to be proportional to channel height, and not affected by the width over a particular channel width size. Therefore, microchannels with smaller channel height(about less than 2 mm) and bigger channel width (about more than 4 mm), can be attractive design for better heat removal and higher production.

Influence of geometric factors on pull-out resistance of gravity-type anchorage for suspension bridge

  • Hyunsung, Lim;Seunghwan, Seo;Junyoung, Ko;Moonkyung, Chung
    • Geomechanics and Engineering
    • /
    • v.31 no.6
    • /
    • pp.573-582
    • /
    • 2022
  • The geometry of the gravity-type anchorage changes depends on various factors such as the installation location, ground type, and relationship with the upper structure. In particular, the anchorage geometry embedded in the ground is an important design factor because it affects the pull-out resistance of the anchorage. This study examined the effect of four parameters, related to anchorage geometry and embedded ground conditions, on the pull-out resistance in the gravity-type anchorage through two-dimensional finite element analysis, and presented a guide for major design variables. The four parameters include the 1) flight length of the stepped anchorage (m), 2) flight height of the stepped anchorage (n), 3) the anchorage heel height (b), and 4) the thickness of the soil (e). It was found that as the values of m increased and the values of n decreased, the pull-out resistance of the gravity-type anchorage increased. This trend is related to the size of the contact surface between the anchorage and the rock, and it was confirmed that the value of n, which has the largest change rate of the contact surface between the anchorage and the rock, has the greatest effect on the pull-out resistance of the anchorage. Additionally, the most effective design was achieved when the ratio of the step to the bottom of the anchorage (m) was greater than 0.7, and m was found to be an important factor in the pull-out resistance behavior of the anchorage.

AUTOMATIC GENERATION OF UNSTRUCTURED SURFACE GRID SYSTEM USING CAD SURFACE DATA (CAD 형상 데이터를 이용한 비정렬 표면 격자계의 자동 생성 기법)

  • Lee, B.J.;Kim, B.S.
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.68-73
    • /
    • 2007
  • Computational Fluid Dynamics (CFD) approach is now playing an important role in the engineering process in these days. Generating proper grid system in time for the region of interest is prerequisite for the efficient numerical calculation of flow physics using CFD approach. Grid generation is, however, usually considered as a major obstacle for a routine and successful application of numerical approaches in the engineering process. CFD approach based on the unstructured grid system is gaining popularity due to its simplicity and efficiency for generating grid system compared to the structured grid approaches, especially for complex geometries. In this paper an automated triangular surface grid generation using CAD(Computer Aided Design) surface data is proposed. According to the present method, the CAD surface data imported in the STL(Stereo-lithography) format is processed to identify feature edges defining the topology and geometry of the surface shape first. When the feature edges are identified, node points along the edges are distributed. The initial fronts which connect those feature edge nodes are constructed and then they are advanced along the CAD surface data inward until the surface is fully covered by triangular surface grid cells using Advancing Front Method. It is found that this approach can be implemented in an automated way successfully saving man-hours and reducing human-errors in generating triangular surface grid system.

Specimen Geometry Effects on Oxidation Behavior of Nuclear Graphite

  • Cho, Kwang-Youn;Kim, Kyung-Ja;Lim, Yun-Soo;Chung, Yun-Joong;Chi, Se-Hwan
    • Carbon letters
    • /
    • v.7 no.3
    • /
    • pp.196-200
    • /
    • 2006
  • Graphite has hexagonal closed packing structure with two bonding characteristics of van der Waals bonding between the carbon layers at c axis, and covalent bonding in the carbon layer at a and b axis. Graphite has high tolerant to the extreme conditions of high temperature and neutron irradiations rather than any other materials of metals and ceramics. However, carbon elements easily react with oxygen at as low as 400C. Considering the increasing production of today of hydrogen and electricity with a nuclear reactor, study of oxidation characteristics of graphite is very important, and essential for the life evaluation and design of the nuclear reactor. Since the oxidation behaviors of graphite are dependent on the shapes of testing specimen, critical care is required for evaluation of nuclear reactor graphite materials. In this work, oxidation rate and amounts of the isotropic graphite (IG-110, Toyo Carbon), currently being used for the Koran nuclear reactor, are investigated at various temperature. Oxidation process or principle of graphite was figured out by measuring the oxidation rate, and relation between oxidation rate and sample shape are understood. In the oxidation process, shape effect of volume, surface area, and surface to volume ratio are investigated at $600^{\circ}C$, based on the sample of ASTM C 1179-91.

  • PDF