• Title/Summary/Keyword: Surface free energy

Search Result 636, Processing Time 0.032 seconds

Surface and size dependent effects on static, buckling, and vibration of micro composite beam under thermo-magnetic fields based on strain gradient theory

  • Mohammadimehr, Mehdi;Mehrabi, Mojtaba;Hadizadeh, Hasan;Hadizadeh, Hossein
    • Steel and Composite Structures
    • /
    • v.26 no.4
    • /
    • pp.513-531
    • /
    • 2018
  • In this article, static, buckling and free vibration analyses of a sinusoidal micro composite beam reinforced by single-walled carbon nanotubes (SWCNTs) with considering temperature-dependent material properties embedded in an elastic medium in the presence of magnetic field under transverse uniform load are presented. This system is used at micro or sub micro scales to enhance the stiffness of micro composite structures such as bar, beam, plate and shell. In the present work, the size dependent effects based on surface stress effect and modified strain gradient theory (MSGT) are considered. The generalized rule of mixture is employed to predict temperature-dependent mechanical and thermal properties of micro composite beam. Then, the governing equations of motions are derived using Hamilton's principle and energy method. Numerical results are presented to investigate the influences of material length scale parameters, elastic foundation, composite fiber angle, magnetic intensity, temperature changes and carbon nanotubes volume fraction on the bending, buckling and free vibration behaviors of micro composite beam. There is a good agreement between the obtained results by this research and the literature results. The obtained results of this study demonstrate that the magnetic intensity, temperature changes, and two parameters elastic foundations have important effects on micro composite stiffness, while the magnetic field has greater effects on the bending, buckling and free vibration responses of micro composite beams. Moreover, it is shown that the effects of surface layers are important, and observed that the changes of carbon nanotubes volume fraction, beam length-to-thickness ratio and material length scale parameter have noticeable effects on the maximum deflection, critical buckling load and natural frequencies of micro composite beams.

Effect of Periodic Passing Wake on the Flow Field of a Film-Cooled Flat Plate(I) (주기적인 통과후류가 막냉각되는 평판의 유동장에 미치는 영향(1);압력면과 흡입면에 대한 영향(1))

  • Kuk, Keon;Lee, Joon-Sik;Kauh, Sang-Ken
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.6
    • /
    • pp.1931-1940
    • /
    • 1996
  • The effect of periodic passing wake on the film-coolant flow issuing normally from a flat plate was investigated experimentally. The passing wake was generated by rotating thin circular bars. Depending on the rotational direction the test plate could be simulated as a pressure surface or a suction surface of a gas turbine blade. The phase-averaged velocity components were measured using an X-type hot-wire probe. The Reynolds number based on the free-stream velocity and injection hole diameter was 23, 500 and the velocity ratio which is the ratio of film coolant velocity to free-stream velocity was 0.5. The velocity-triangle induced by the wake was similar to that induced by the one generated at the blade trailing edge. The vertical velocity component induced by the passing wake, which approaches to the suction surface and moves away from the pressure surface, played a dominant role in the variation of the flow field. The variation in the phase-averaged velocity on the pressure surface was greater than on the suction surface, but the turbulence kinetic energy variation on the suction surface appeared larger than on the pressure surface.

Activation Energy and Interface Reaction of Sn-40Pb/Cu & Sn-3.0Ag-0.5Cu/Cu (Sn-40Pb/Cu 및 Sn-3.0Ag-0.5Cu/Cu 접합부 계면반응 및 활성화에너지)

  • Kim, Whee-Sung;Hong, Won-Sik;Park, Sung-Hun;Kim, Kwang-Bae
    • Korean Journal of Materials Research
    • /
    • v.17 no.8
    • /
    • pp.402-407
    • /
    • 2007
  • In electronics manufacturing processes, soldering process has generally been used in surface mounting technology. Because of environmental restriction, lead free solders as like a SnAgCu ternary system are being used widely. After soldering process, the formation and growth of intermetalic compounds(IMCs) are formed in the interface between solder and Cu substrate as follows isothermal temperature and time. In this studies, therefore, we investigated the effects of the Cu substrate thickness on the IMC formation and growth of Sn-40Pb/Cu and Sn-3.0Ag-0.5Cu/Cu solder joints, respectively. The effect of the Cu thickness in PCB Cu pad and pure Cu plate was analyzed as measuring of thickness of each IMC. After solder was soldered on PCB and Cu plate which have different Cu thickness, we measured the IMC thickness in solder joints respectively. Also we compared with the effectiveness of Cu thickness on the IMC growth. From these results, we calculated the activation energy.

Thermodynamic Issues of Lead-Free Soldering in Electronic Packaging (전자 패키징에 사용되는 무연 솔더에 관한 열역학적 연구)

  • 정상원;김종훈;김현득;이혁모
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.3
    • /
    • pp.37-42
    • /
    • 2003
  • In soldering of electronic packaging, the research on substituting lead-free solder materials for Pb-Sn alloys has become active due to environmental and health concerns over the use of lead. The reliability of the solder joint is very important in the development of solder materials and it is known that it is related to wettability of the solder over the substrate and microstructural evolution during soldering. It is also highly affected by type and extent of the interfacial reaction between solder and substrate and therefore, it is necessary to understand the interfacial reaction between solder and substrate completely. In order to predict the intermetallic compound (IMC) phase which forms first at the substrate/solder interface during the soldering process, a thermodynamic methodology has been suggested. The activation energy for the nucleation of each IMC phases is represented by a function of the interfacial energy and the driving force for phase formation. From this, it is predicted that the IMC phase with the smallest activation energy forms first. The grain morphology of the IMC at the solder joint is also explained by the calculations which use the energy. The Jackson parameter of the IMC grain with a rough surface is smaller than 2 but it is larger than 2 in the case of faceted grains.

  • PDF

Theoretical Characterization of Binding Mode of Organosilicon Inhibitor with p38: Docking, MD Simulation and MM/GBSA Free Energy Approach

  • Gadhe, Changdev G.;Balupuri, Anand;Kothandan, Gugan;Cho, Seung Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2494-2504
    • /
    • 2014
  • P38 mitogen activated protein (MAP) kinase is an important anti-inflammatory drug target, which can be activated by responding to various stimuli such as stress and immune response. Based on the conformation of the conserved DFG loop (in or out), binding inhibitors are termed as type-I and II. Type-I inhibitors are ATP competitive, whereas type-II inhibitors bind in DFG-out conformation of allosteric pocket. It remains unclear that how these allosteric inhibitors stabilize the DFG-out conformation and interact. Organosilicon compounds provide unusual opportunity to enhance potency and diversity of drug molecules due to their low toxicity. However, very few examples have been reported to utilize this property. In this regard, we performed docking of an inhibitor (BIRB) and its silicon analog (Si-BIRB) in an allosteric binding pocket of p38. Further, molecular dynamics (MD) simulations were performed to study the dynamic behavior of the simulated complexes. The difference in the biological activity and mechanism of action of the simulated inhibitors could be explained based on the molecular mechanics/generalized Born surface area (MM/GBSA) binding free energy per residue decomposition. MM/GBSA showed that biological activities were related with calculated binding free energy of inhibitors. Analyses of the per-residue decomposed energy indicated that van der Waals and non-polar interactions were predominant in the ligand-protein interactions. Further, crucial residues identified for hydrogen bond, salt bridge and hydrophobic interactions were Tyr35, Lys53, Glu71, Leu74, Leu75, Ile84, Met109, Leu167, Asp168 and Phe169. Our results indicate that stronger hydrophobic interaction of Si-BIRB with the binding site residues could be responsible for its greater binding affinity compared with BIRB.

Phase diagrams adn stable structures of stranski-krastanov structure mode for III-V ternary quantum dots

  • Nakajima, Kazuo;Ujihara, Toru;Miyashita, Satoru;Sazaki, Gen
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.4
    • /
    • pp.387-395
    • /
    • 1999
  • The strain, surface and interfacial energies of III-V ternary systems were calculated for three kinds of structure modes: the Frank-van der Merwe(FM) mode, the Stanski-Krastanov(SK) mode and the Volmer-Weber(VW) mode. The free energy for each mode was estimated as functions of thickness and composition or lattice misfit. Through comparison of the free energy of each mode, it was found that the thickness-composition phase diagrams of III-V ternary systems can be determined only by considering the balance of the free energy and three kinds of structure modes appear in the phase diagrams. The SK mode appears only when the lattice misfit is large and/or the lattice layer is thick. The most stable structure of the SK mode is a cluster with four lattice layers or minimum thickness on a wetting layer of increasing lattice layers. The VW mode appears when the lattice misfit is large and the lattice layer is thin and only in the INPSb/InP and GaPSb/GaP system which have the largest lattice misfit of III-V ternary systems. The stable region of the SK mode in the GaPSb/GaP and InPSb/InP phase diagrams is largest of all because the composition dependence of the strain energy of these systems is stronger than that of the other systems. The critical number of lattice layers below which two-dimensional(2D) layers precede the three-dimensional(3D) nucleation in the SK mode at x=1.0 depends on the lattice misfit.

  • PDF

A study of high-power density laser welding process considering surface tension and recoil pressure (표면장력과 후압을 고려한 고에너지밀도 레이저 용접공정 해석)

  • Ha, Eung-Ji;Kim, Woo-Seung
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1190-1195
    • /
    • 2004
  • In this study, numerical investigation has been performed on the evolution of key-hole geometry during high-energy density laser welding process. Unsteady phase-change heat transfer and fluid flow with the surface tension and recoil pressure are simulated. To model the overheated surface temperature and recoil pressure considering subsonic/sonic vapor flow, the one-dimensional vaporization models proposed by Ganesh and Knight are coupled over liquid-vapor interface. It is shown that the present model predicts well both the vaporization physics and the fluid flow in the thin liquid layer over the other model.

  • PDF

Design Efforts of PAL XFEL RF Components to Reduce RF Breakdown Due to Surface Electric Gradient in High Power Operation

  • Ju, Yeong-Do;Park, Yong-Jeong;Lee, Heung-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.239-239
    • /
    • 2013
  • The peak klystron power for the PAL (Pohang Accelerator Laboratory) XFEL (X-ray Free Electron Laser) is up to 80 MW which is higher than that of PLS-II LINAC. To prevent the RF breakdown such a high power operation, some of RF components need to be redesigned to reduce the surface electric field gradient to be less than the breakdown gradient at the vacuum-metal surface. For instances, the redesign of the Stanford Linear Accelerator Energy Doubler (SLED) system, the directional coupler and 3dB power splitter using the finite-difference time-domain (FDTD) simulation will be presented.

  • PDF

Preparation of a Dense Cu(In,Ga)Se2 Film From (In,Se)/(Cu,Ga) Stacked Precursor for CIGS Solar Cells

  • Mun, Seon Hong;Chalapathy, R.B.V.;Ahn, Jin Hyung;Park, Jung Woo;Kim, Ki Hwan;Yun, Jae Ho;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • The $Cu(In,Ga)Se_2$ (CIGS) thin film obtained by two-step process (metal deposition and Se annealing) has a rough surface morphology and many voids at the CIGS/Mo interface. To solve the problem a precursor that contains Se was employer by depositing a (In,Se)/(Cu,Ga) stacked layer. We devised a two-step annealing (vacuum pre-annealing and Se annealing) for the precursor because direct annealing of the precursor in Se environment resulted in the small grains with unwanted demarcation between stacked layers. After vacuum pre-annealing up to $500^{\circ}C$ the CIGS film consisted of CIGS phase and secondary phases including $In_4Se_3$, InSe, and $Cu_9(In,Ga)_4$. The secondary phases were completely converted to CIGS phase by a subsequent Se annealing. A void-free CIGS/Mo interface was obtained by the two-step annealing process. Especially, the CIGS film prepared by vacuum annealing $450^{\circ}C$ and subsequent Se annealing $550^{\circ}C$ showed a densely-packed grains with smooth surface, well-aligned bamboo grains on the top of the film, little voids in the film, and also little voids at the CIGS/Mo interface. The smooth surface enhanced the cell performance due to the increase of shunt resistance.

Development of an Anti-Freezing Heating Cable Temperature Controller and Its Power Saving Effects Analysis (동파방지 발열선용 온도제어기 개발 및 전기에너지 절감 효과 분석)

  • Lee, Kihong;Lee, Jaejin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.10
    • /
    • pp.101-106
    • /
    • 2014
  • Although anti-freezing heating cable has been widely installed in most residential boiler pipe, there were excessive energy consumption and fire risk due to inadequate temperature control. In this paper, a new energy saving fire risk-free controller was developed by using microprocessing operation which include detection of not only boiler room temperature but also pipe surface one. Its actual effect has been verified to save more than a half of the energy consumption comparing to conventional controller through temperature and humidity chamber experiment.