• Title/Summary/Keyword: Surface features

Search Result 1,662, Processing Time 0.032 seconds

A Study on Confocal Microscope for A Precise 3-Dimensional Surface Measurement (물체표면의 3차원 정밀형상측정을 위한 공초점 현미경에 관한 연구)

  • 송대호;안중근;강영준;채희창
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.233-236
    • /
    • 1997
  • In modem industry, the accuracy and the surface-finish requirements for machined parts have been becoming ever more stringent. Optical method in measurements is playing an important role in vibration measurement, crack and defect detection and surface topography with the advent of opto-mechatronics. In this study, the principle of the general confocal microscope is introduced for surface measurement, and the advanced confocal microscope that has better measuring speed than the traditional confocal microscope is developed. A study on improving the resolution of the advanced confocal microscope is followed. Finally, Software for data acquisition and analysis of various parameters in surface geometrical features has been developed.

  • PDF

Virtual Models for 3D Printing

  • Haeseong Jee
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.1
    • /
    • pp.1-11
    • /
    • 1999
  • surface texture denotes set of tiny repetitive geometric features on an object surface. 3D Printing can readily create a surface of controlled macro-textures of high geometric complexity. Designing surface textures for 3D Printing, however, is difficult due to complex macro-structure of the tiny texture geometry since it needs to be compatible with the non-traditioal manufacturing method. In this paper we propose a visual simulation technique involving development of a virtual model-an intermediate geometric model-of the surface texture design prior to fabricating the physical model. Careful examination of the virtual model before the actual fabrication can help minimize unwanted design iterations. The proposed technique demonstrated visualization capability by comparing the virtual model with the physical model for several test cases.

  • PDF

Investigation of Floor Surface Finishes for Optimal Slip Resistance Performance

  • Kim, In-Ju
    • Safety and Health at Work
    • /
    • v.9 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • Background: Increasing the slip resistance of floor surfaces would be desirable, but there is a lack of evidence on whether traction properties are linearly correlated with the topographic features of the floor surfaces or what scales of surface roughness are required to effectively control the slipperiness of floors. Objective: This study expands on earlier findings on the effects of floor surface finishes against slip resistance performance and determines the operative ranges of floor surface roughness for optimal slip resistance controls under different risk levels of walking environments. Methods: Dynamic friction tests were conducted among three shoes and nine floor specimens under wet and oily environments and compared with a soapy environment. Results: The test results showed the significant effects of floor surface roughness on slip resistance performance against all the lubricated environments. Compared with the floor-type effect, the shoe-type effect on slip resistance performance was insignificant against the highly polluted environments. The study outcomes also indicated that the oily environment required rougher surface finishes than the wet and soapy ones in their lower boundary ranges of floor surface roughness. Conclusion: The results of this study with previous findings confirm that floor surface finishes require different levels of surface coarseness for different types of environmental conditions to effectively manage slippery walking environments. Collected data on operative ranges of floor surface roughness seem to be a valuable tool to develop practical design information and standards for floor surface finishes to efficiently prevent pedestrian fall incidents.

The Study on the Improvement of Principle in Determining Road Boundary Used by Geographical Features (지형지물을 이용한 도로경계 설정 원칙의 개선 방안)

  • Jeon, Yeong-Gil
    • Journal of Cadastre & Land InformatiX
    • /
    • v.46 no.2
    • /
    • pp.93-105
    • /
    • 2016
  • Among 28 land Categories, 'road' is that most frequently established or transformed. Like that of other 27 land categories, the boundary of road should be defined by boundary making principles and then fixed by cadastral laws. But, some criteria to determine the land boundary, especially in boundary making rule which can be used by geographical features, is confused partly in Land Use Planning stages. Because the purpose of making any rules in fixing road boundary may be misinterpreted, the gap between law and real land boundary can be occurred. Those related rules in determining the land boundary must be improved urgently. Cut surface' or 'slope' should be conformed as a legal term and I suggest that 'Structures' must be changed to 'geographical features'.

Sound Absorption Capability and Anatomical Features of Highly Sound Absorptive Wood (고흡음성 목재의 흡음성능과 구조적 특징)

  • Kang, Chun-Won;Kang, Wook;Kim, Gwang-Chul
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.292-297
    • /
    • 2010
  • Sound absorption capability and anatomical features of kagikazura (Uncaria rhynchophylla) and larch (lalix kaemferi) wood were estimated. Sound absorption coefficients had been measured by the two microphone transfer function method and anatomical features of kagikazura wood examined by SEM observation. The sound absorption coefficients of Uncaria rhynchophylla was higher than lalix kaemferi. Especially, in the frequency range of 1 to 4KHz, sound absorption coefficients of kagikazura was about 2~3 times higher than those of lalix kaemferi. Abundant and big vessel observed on the cross sectional surface of kagikazura wood and simple perforation plate observed on the longitudinal surface. It was surmised that the abundant big vessel element and simple perforation plate behaved as a sound absorbing pore.

Feature Extraction and Evaluation for Classification Models of Injurious Falls Based on Surface Electromyography

  • Lim, Kitaek;Choi, Woochol Joseph
    • Physical Therapy Korea
    • /
    • v.28 no.2
    • /
    • pp.123-131
    • /
    • 2021
  • Background: Only 2% of falls in older adults result in serious injuries (i.e., hip fracture). Therefore, it is important to differentiate injurious versus non-injurious falls, which is critical to develop effective interventions for injury prevention. Objects: The purpose of this study was to a. extract the best features of surface electromyography (sEMG) for classification of injurious falls, and b. find a best model provided by data mining techniques using the extracted features. Methods: Twenty young adults self-initiated falls and landed sideways. Falling trials were consisted of three initial fall directions (forward, sideways, or backward) and three knee positions at the time of hip impact (the impacting-side knee contacted the other knee ("knee together") or the mat ("knee on mat"), or neither the other knee nor the mat was contacted by the impacting-side knee ("free knee"). Falls involved "backward initial fall direction" or "free knee" were defined as "injurious falls" as suggested from previous studies. Nine features were extracted from sEMG signals of four hip muscles during a fall, including integral of absolute value (IAV), Wilson amplitude (WAMP), zero crossing (ZC), number of turns (NT), mean of amplitude (MA), root mean square (RMS), average amplitude change (AAC), difference absolute standard deviation value (DASDV). The decision tree and support vector machine (SVM) were used to classify the injurious falls. Results: For the initial fall direction, accuracy of the best model (SVM with a DASDV) was 48%. For the knee position, accuracy of the best model (SVM with an AAC) was 49%. Furthermore, there was no model that has sensitivity and specificity of 80% or greater. Conclusion: Our results suggest that the classification model built upon the sEMG features of the four hip muscles are not effective to classify injurious falls. Future studies should consider other data mining techniques with different muscles.

The Innovative Application of Surface Texture in Fashion and Textile Design

  • Gong, Lin;Shin, Jooyoung
    • Fashion & Textile Research Journal
    • /
    • v.15 no.3
    • /
    • pp.336-346
    • /
    • 2013
  • This study focuses on 'texture' as one of the most important fashion and textile design elements; in addition, it proposes various applications of it. Surface texture is indispensable in fashion and textile design that also factors heavily into innovative creations. Along with technological advances in the fashion industry, surface texture has derived many new and attractive features that provide more opportunities for designers to show various design concepts. Rather than the surface quality of fabrics, surface texture in fashion design creates its identity through a manipulation of materials- an application that tends to be primarily for visual effects without being restricted to decorative purposes. The status and significance of surface texture in various creative fields is explored and the evolution of surface texture is traced by analyzing a number of fashion design cases with representative surface textures. The latest feature of surface texture in fashion and textile design is identified to establish a new classification of surface texture with five groups and technical suggestions. This study provides a theoretical basis for this field of study and a new framework that can be employed in the development of surface textures that use innovative techniques as well as the future application of newly-developed textures.

Development of the DNA Sequencing Chip with Nano Pillar Array using Injection Molding (Nano Pillar Array 사출성형을 이용한 DNA 분리 칩 개발)

  • Kim S.K.;Choi D.S.;Yoo Y.E.;Je T.J.;Kim T.H.;Whang K.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1206-1209
    • /
    • 2005
  • In recent, injection molding process for features in sub-micron scale is under active development as patterning nano-scale features, which can provide the master or stamp for molding, and becomes available around the world. Injection molding has been one of the most efficient processes for mass production of the plastic product, and this process is already applied to nano-technology products successfully such as optical storage media like DVD or BD which is a large area plastic thin substrate with nano-scale features on its surface. Bio chip for like DNA sequencing may be another application of this plastic substrate. The DNA can be sequenced using order of 100 nm pore structure when making the DNA flow through the pore structure. Agarose gel and silicon based chip have been used to sequence the DNA, but injection molded plastic chip may have benefit in terms of cost. This plastic DNA sequencing chip has plenty of pillars in order of 100 nm in diameter on the substrate. When the usual features in case of DVD or BD have very low aspect ratio, even less than 0.5, but the DNA chip will have relatively high aspect ratio of about 2. It is not easy to injection mold the large area thin substrate with sub-micron features on its surface due to the characteristics of the molding process and it becomes much more difficult when the aspect ratio of the features becomes high. We investigated the effect of the molding parameters for injection molding with high aspect ratio nano-scale features and injection molded some plastic DNA sequencing chips. We also fabricated PR masters and Ni stamps of the DNA chip to be used for molding

  • PDF

Surface Crack Evaluation Method in Concrete Structures (콘크리트 구조물의 표면 균열 평가 기법)

  • Lee, Bang-Yeon;Yi, Seong-Tae;Kim, Jin-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.2
    • /
    • pp.173-182
    • /
    • 2007
  • Cracks in concrete structures should be measured to periodically assess potential problems in durability and serviceability. Conventional crack measurement systems depend on visual inspections and manual measurements of the crack features such as width, length, and direction using microscope and crack gage. However, conventional methods take long time as well as manpower, and lack quantitative objectivity resulted by inspectors. In this study, an evaluation technique for concrete surface cracks is developed using image processing and artificial neural network. Developed technique consists of three major parts: (1) crack detection (2) crack analysis and (3) pattern recognition. To examine validity of the technique developed in this study, crack analyzing tests were performed on the images obtained from various types of concrete surface cracks. The test results revealed that the system is highly effective in automatically analyzing concrete surface cracks in terms of features and patterns of cracks.

Epidermal Features of the Nelumbo nucifera Tissues and Lotus Effect (연꽃식물 조직의 표피 특성과 연잎효과)

  • Kim, In-Sun
    • Applied Microscopy
    • /
    • v.42 no.2
    • /
    • pp.95-103
    • /
    • 2012
  • The cell surface sculpture of the plant epidermis has received great interest recently. It has also been an active area of research, as the biological microstructures of the surface, such as papillae and waxes, exhibit several unique properties, including self-cleaning character; namely the "Lotus effect" first described in the leaves of the lotus, Nelumbo nucifera. The Lotus effect is the phenomenon in which the super-hydrophobic and water-repellent nature of lotus leaves allow water drops to run off easily on the surface in a rolling and sliding motion thereby facilitating the removal of dirt particles. It is well-known that surface roughness on the micro- and nanoscale is a primary characteristic allowing for the Lotus effect. This effect is common among plants and is of great technological importance, since it can be applied industrially in numerous fields. In the present study, Nelumbo nucifera leaf and stem epidermal surfaces have been examined with a focus on the features of papillae and wax crystalloids. Both young and mature Nelumbo nucifera leaf epidermis demonstrated the Lotus effect on their entire epidermal surface. The central area of the upper epidermis, in particular, formed extremely papillose surfaces, with an additional wax layer, enabling greater water repellency. Despite the presence of wax crystalloids, epidermal surfaces of the lower leaf and stem lacking papillae, were much more easily wetted.