• Title/Summary/Keyword: Surface engineering

Search Result 34,519, Processing Time 0.063 seconds

Optimization of Solvent Extraction Process on the Active Functional Components from Chinese Quince (모과내 기능성 유용성분 용매추출공정의 최적화)

  • Jeon, Ju-Yeong;Jo, In-Hee;Kyung, Hyun-Kyu;Kim, Hyun-A;Lee, Chang-Min;Choi, Yong-Hee
    • Food Engineering Progress
    • /
    • v.14 no.2
    • /
    • pp.92-98
    • /
    • 2010
  • In this study, various active functional components in Chinese Quince were extracted by solvent extraction method. A central composit design for optimization was applied to investigate the effects of independent variables such as solvent to sample ratio ($X_{1}$), extraction temperature ($X_{2}$), and extraction time ($X_{3}$) on the soluble solid contents ($Y_{1}$), total phenols ($Y_{2}$), electron donating ability ($Y_{3}$), browning color ($Y_{4}$) and reducing sugar contents ($Y_{5}$). It was found that extraction temperature and extraction time were the main effective factors in this extraction process. The maximum soluble solid contents of 35.77% was obtained at 26.38 mL/g ($X_{1}$), 72.82$^{\circ}C$ ($X_{2}$) and 74.86 min ($X_{3}$) in saddle point. Total phenols were rarely affected by solvent ratio and extraction time, but it was affected by extraction temperature. The maximum total phenols of 20.70% was obtained at 22.61 mL/g ($X_{1}$), 84.49$^{\circ}C$ ($X_{2}$), 77.25 min ($X_{3}$) in saddle point. The electron donating ability was affected by extraction time. The maximum electron donating ability of 94.12% was obtained at 10.65 mL/g ($X_{1}$), 67.78$^{\circ}C$ ($X_{2}$), 96.75 min ($X_{3}$) in saddle point. The maximum browning color of 0.32% was obtained at 23.77 mL/g ($X_{1}$), 87.27$^{\circ}C$ ($X_{2}$), 96.68 min ($X_{3}$) in saddle point. The maximum value of reducing sugar content of 10.55% was obtained at 26.83 mL/g ($X_{1}$), 82.167$^{\circ}C$ ($X_{2}$), 81.94 min ($X_{3}$). Reducing sugar content was affected by extraction time.

Optimization of Extraction of Functional Components from Black Rice Bran (흑미 미강의 기능성 성분 추출 공정 최적화)

  • Jo, In-Hee;Choi, Yong-Hee
    • Food Engineering Progress
    • /
    • v.15 no.4
    • /
    • pp.388-397
    • /
    • 2011
  • The purpose of this study was to determine the optimum ethanol extraction conditions for maximum extraction of functional components such as ferulic acid, oryzanol, and toopherol from black rice bran using Response Surface Methodology (RSM). A central composite design was applied to investigate the effects of the independent variables of solvent ratio ($X_{1}$), extraction temperature ($X_{2}$) and extraction time ($X_{3}$) on the dependent variables such as total phenol components ($Y_{1}$), total flavonoids compounds ($Y_{2}$), electron donating ability ($Y_{3}$), $\gamma$-oryzanol ($Y_{4}$), ferulic acid ($Y_{5}$) and $\alpha$-toopherol components ($Y_{6}$). ANOVA results showed that coefficients of determination (R-square) of estimated models for dependent variables ranged from 0.8939 to 0.9470. It was found that solvent ratio and extraction temperature were the main effective factors in this extraction proess. Particularly, the extraction efficiency of ferulic acid, $\gamma$-oryzanol and $\alpha$-toopherol components were significantly affected by extraction temperature. As a result, optimum extraction conditions were 20.35 mL/g of solvent ratio, 79.4$^{\circ}C$ of extraction temperature and 2.88 hr of extraction time. Predicted values at the optimized conditions were acceptable when compared with experimental values.

Development of Vacuum Puffing Machine for Non-deep Fried Yukwa and Its Puffing Characteristics by Process Variables (비유탕 유과 제조를 위한 진공팽화기의 개발 및 공정변수에 따른 유과의 팽화특성)

  • Yu, Je-Hyeok;Ryu, Gi-Hyung
    • Food Engineering Progress
    • /
    • v.14 no.3
    • /
    • pp.193-201
    • /
    • 2010
  • The aim of this study was to analyse the quality of Yukwa puffed by using a vacuum puffing machine and compare to deep-fried Yukwa. The effect of vacuum puffing condition including heating temperature(100-${160^{\circ}C}$), preheating time(0-8 min) and vacuum puffing time(5-20 min) on physical and microstructure characteristics of the Yukwa was investigated. Vacuum puffed Yukwa at ${100^{\circ}C}$ heating temperature, 6 min preheating time and 10 min puffing time had highest value in volumetric expansion ratio(10.04) and lowest value in bulk density(0.15 g/$cm^{3}$). The breaking strength showed the lowest value of 140 g/$cm^{3}$ in vacuum puffing Yukwa at ${100^{\circ}C}$ heating temperature, 6 min preheating time and 15 min puffing time. The Yukwa puffed with the vacuum puffing machine at ${100^{\circ}C}$ heating temperature, 6 min preheating time and 15 min puffing time had the higher value of bulk density and the lower value of volumetric expansion ratio than those of deep-fried Yukwa. Increasing preheating time and vacuum puffing time caused an increase in white and an decrease in yellowness. The vacuum-puffed Yukwa exhibited smaller and uniform cell structure, while deep-fried Yukwa exhibited apparently in larger pores inside and smaller pores near the surface layer. The optimum condition of vacuum puffing machine for the production of vacuum-puffing Yukwa was ${120^{\circ}C}$ heating temperature, 4 min preheating time and 5 min puffing time.

A Study on the Verification of an Indoor Test of a Portable Penetration Meter Using the Cone Penetration Test Method (자유낙하 콘관입시험법을 활용한 휴대용 다짐도 측정기의 실내시험을 통한 검증 연구)

  • Park, Geoun Hyun;Yang, An Seung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.2
    • /
    • pp.41-48
    • /
    • 2019
  • Soil compaction is one of the most important activities in the area of civil works, including road construction, airport construction, port construction and backfilling construction of structures. Soil compaction, particularly in road construction, can be categorized into subgrade compaction and roadbed compaction, and is significant work that when done poorly can serve as a factor causing poor construction due to a lack of compaction. Currently, there are many different types of compaction tests, and the plate bearing test and the unit weight of soil test based on the sand cone method are commonly used to measure the degree of compaction, but many other methods are under development as it is difficult to secure economic efficiency. For the purpose of this research, a portable penetration meter called the Free-Fall Penetration Test (FFPT) was developed and manufactured. In this study, a homogeneous sample was obtained from the construction site and soil was classified through a sieve analysis test in order to perform grain size analysis and a specific gravity test for an indoor test. The principle of FFPT is that the penetration needle installed at the tip of an object put into free fall using gravity is used to measure the depth of penetration into the road surface after subgrade or roadbed compaction has been completed; the degree of compaction is obtained through the unit weight of soil test according to the sand cone method and the relationship between the degree of compaction and the depth of the penetration needle is verified. The maximum allowable grain size of soil is 2.36 mm. For $A_1$ compaction, a trend line was developed using the result of the test performed from a drop height of 10 cm, and coefficient of determination of the trend line was $R^2=0.8677$, while for $D_2$ compaction, coefficient of determination of the trend line was $R^2=0.9815$ when testing at a drop height of 20 cm. Free fall test was carried out with the drop height adjusted from 10 cm to 50 cm at increments of 10 cm. This study intends to compare and analyze the correlation between the degree of compaction obtained from the unit weight of soil test based on the sand cone method and the depth of penetration of the penetration needle obtained from the FFPT meter. As such, it is expected that a portable penetration tester will make it easy to test the degree of compaction at many construction sites, and will lead to a reduction in time, equipment, and manpower which are the disadvantages of the current degree of compaction test, ultimately contributing to accurate and simple measurements of the degree of compaction as well as greater economic feasibility.

CALPUFF Modeling of Odor/suspended Particulate in the Vicinity of Poultry Farms (축사 주변의 악취 및 부유분진의 CALPUFF 모델링: 계사 중심으로)

  • Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.90-104
    • /
    • 2019
  • In this study, CALPUFF modeling was performed, using a real surface and upper air meterological data to predict trustworthy modeling-results. Pollutant-releases from windscreen chambers of enclosed poultry farms, P1 and P2, and from a open poultry farm, P3, and their diffusing behavior were modeled by CALPUFF modeling with volume sources as well as by finally-adjusted CALPUFF modeling where a linear velocity of upward-exit gas averaged with the weight of each directional-emitting area was applied as a model-linear velocity ($u^M_y$) at a stack, with point sources. In addition, based upon the scenario of poultry farm-releasing odor and particulate matter (PM) removal efficiencies of 0, 20, 50 and 80% or their corresponding emission rates of 100, 80, 50 and 20%, respectively, CALPUFF modeling was performed and concentrations of odor and PM were predicted at the region as a discrete receptor where civil complaints had been frequently filed. The predicted concentrations of ammonia, hydrogen sulfide, $PM_{2.5}$ and $PM_{10}$ were compared with those required to meet according to the offensive odor control law or the atmospheric environmental law. Subsequently their required removal efficiencies at poultry farms of P1, P2 and P3 were estimated. As a result, a priori assumption that pollutant concentrations at their discrete receptors are reduced by the same fraction as pollutant concentrations at P1, P2 and P3 as volume source or point source, were controlled and reduced, was proven applicable in this study. In case of volume source-adopted CALPUFF modeling, its required removal efficiencies of P1 compared with those of point source-adopted CALPUFF modeling, were predicted similar each other. However, In case of volume source-adopted CALPUFF modeling, its required removal efficiencies of both ammonia and $PM_{10}$ at not only P2 but also P3 were predicted higher than those of point source-adopted CALPUFF modeling. Nonetheless, the volume source-adopted CALPUFF modeling was preferred as a safe approach to resolve civil complaints. Accordingly, the required degrees of pollution prevention against ammonia, hydrogen sulfide, $PM_{2.5}$ and $PM_{10}$ at P1 and P2, were estimated in a proper manner.

A study on the structure of the Three storied Stone pagoda in Gameunsa Temple site (감은사지 삼층석탑 구조)

  • Nam, si-jin
    • Korean Journal of Heritage: History & Science
    • /
    • v.38
    • /
    • pp.329-358
    • /
    • 2005
  • The Three storied Stone pagoda in Gameunsa Temple site, one of the early staged stone pagodas, has been known as a standard for Silla stone pagodas. A stone pagoda is not only a stone art work and but also a stone structure. Most studies and investigation of the stone pagoda has done mainly based on style and chronological research according to an art historical view. However, there is not an attempt to research the stone pagoda as a stone architecture. Most Korean experts at the stone pagoda has art history in their background. Engineers who can understand the structure of the stone pagoda are very limited. More architectural and engineering approach is need to research not only art historial understanding but also safety as a structure. We can find many technical know-how from our ancestors who made stone pagodas. 1. To reduce any deformation such as relaxation and sinking of BuJae which is caused by a heavy load, the BuJae (consist of a foundation stone and lower stereobates) should be enlarged. 2. A special construction method for connection between Myonsuk and Tangjoo was invented. This unique method is not used any longer after the Three storied Stone pagoda in Gameunsa Temple site. 3. The upper BuJae and the lower BuJae are missed each other by making a difference of Okgaesuk and Okgaebatchim in size. It is done for a distribution of perpendicular load and a prevention for relaxation of BuJae. 4. The center of gravity in the BuJae is located to the center of the stone pagoda by trimming the upper surface of the Okgaebatchim into a convex shape. The man who made stone pagodas had excellent knowledge on the engineering and techniques to understand the structure of the stone pagodas. We can confirm it as follows: the enlarged BuJae, dislocated connection between upper Bujae and lower BuJae, and moving the center of gravity close to the center of the stone pagoda.

The Hydrochemistry of ChusanYongchulso Spring, Cheonbu-ri, Buk-myeon, Northern Ulleung Island (울릉도 북면 천부리 추산 용출소의 수질화학적 특성)

  • Lee, Byeong Dae;Cho, Byong Wook;Choo, Chang Oh
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.565-582
    • /
    • 2018
  • We investigated the hydrochemical properties of ChusanYongchulso Spring located in Buk-myeon, Ulleung Island, focusing on the formation and characteristics of aquifers in and around the Nari caldera. Abundant pumice with high permeability and numerous fractures (including faults and joints) that formed as a result of caldera subsidence are widely distributed in the subsurface, favoring the formation of aquifers. Because of the presence of porous pyroclastic rocks with a high internal surface area, the water type of the springs is characterized by $NaHCO_3$, with upper stream waters and the upper spring being characterized by $NaHCO_3$ and NaCl, respectively. Components with a high coefficient of determination with EC are $HCO_3$, Na, F, Ca, Mg, Cl, $SiO_2$, and $SO_4$. The high concentrations of Na and Cl might be attributable to the main lithologies in the area, given that alkaline volcanic rocks are distributed extensively across Ulleung Island. Eh and pH, which are considered to be important indicators of water-rock interaction, are unrelated to most components. According to the results obtained from factor analysis, the variance explained by factor 1 is 54% and by factor 2 is 25.8%. Components with a high loading on factor 1 are F, Na, EC, Cl, $HCO_3$, $SO_4$, $SiO_2$, Ca, $NO_3$, and Mg, whereas components with a high loading on factor 2 are Mg and Ca, along with K, $NO_3$, and DO with negative loadings. It is suggested that the high concentrations of Na, Cl, F, and $SO_4$ are closely related to the presence of fine-grained alkaline pyroclastic rocks with high permeability and porosity, which favorintensewater-rock interaction. However, a wide-ranging investigation that encompasses methods such as geophysical prospecting and geochemical analysis (including isotope, trace-element, and tracer techniques) will be necessary to gain a better understanding of the groundwater chemistry, aquifer distribution, and water cycling of Ulleung Island.

A Study on the Application of Physical Soil Washing Technology at Lead-contaminated Shooting Range in a Closed Military Shooting Range Area (폐 공용화기사격장 내 납오염 사격장 군부지의 물리적 토양세척정화기술 적용성 연구)

  • Jung, Jaeyun;Jang, Yunyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.5
    • /
    • pp.492-506
    • /
    • 2019
  • Heavy metal contaminants in the shooting range are mostly present in a warhead circle or a metal fragment present as a particle, these fine metal particles are weathered for a long period of time is very likely that the surface is present as an oxide or carbon oxide. In particular, lead which is a representative contaminant in the shooting range soil, is present as more fine particles because it increases the softness and is stretched well. Therefore, by physical washing experiment, we conducted a degree analysis, concentration of heavy metals by cubic diameter, composition analysis of metallic substances, and assessment of applicability of gravity, magnetism and floating selection. The experimental results FESEM analysis and the measurement results lead to the micro-balance was confirmed thatthe weight goes outless than the soil ofthe same size in a thinly sliced and side-shaped structure according to the dull characteristics it was confirmed that the high specific gravity applicability. In addition, the remediation efficiency evaluation results using a hydrocyclone applied to this showed a cumulative remediation efficiency of 71%,twice 80%, 3 times 91%. On the other hand, magnetic sifting showed a low efficiency of 17%,floating selection -35mesh (0.5mm)target soil showed a relatively high efficiency to 39% -10mesh (2mm) efficiency was only 16%. The target treatment diameter of soil washing should be 2mm to 0.075mm, which is applied to the actual equipment by adding an additional input classification, which would require management as additional installation costs and processes are constructed. As a result, it is found that the soilremediation of shooting range can be separately according to the size of the warhead. The size is larger than the gravel diameter to most 5.56mm, so it is possible to select a specific gravity using a high gravity. However, the contaminants present in the metal fragments were found to be processed by separating using a hydrocyclone of the soil washing according to the weight is less than the soil of the same particle size in a thinly fragmented structure.

Detection of flash drought using evaporative stress index in South Korea (증발스트레스지수를 활용한 국내 돌발가뭄 감지)

  • Lee, Hee-Jin;Nam, Won-Ho;Yoon, Dong-Hyun;Mark, D. Svoboda;Brian, D. Wardlow
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.8
    • /
    • pp.577-587
    • /
    • 2021
  • Drought is generally considered to be a natural disaster caused by accumulated water shortages over a long period of time, taking months or years and slowly occurring. However, climate change has led to rapid changes in weather and environmental factors that directly affect agriculture, and extreme weather conditions have led to an increase in the frequency of rapidly developing droughts within weeks to months. This phenomenon is defined as 'Flash Drought', which is caused by an increase in surface temperature over a relatively short period of time and abnormally low and rapidly decreasing soil moisture. The detection and analysis of flash drought is essential because it has a significant impact on agriculture and natural ecosystems, and its impacts are associated with agricultural drought impacts. In South Korea, there is no clear definition of flash drought, so the purpose of this study is to identify and analyze its characteristics. In this study, flash drought detection condition was presented based on the satellite-derived drought index Evaporative Stress Index (ESI) from 2014 to 2018. ESI is used as an early warning indicator for rapidly-occurring flash drought a short period of time due to its similar relationship with reduced soil moisture content, lack of precipitation, increased evaporative demand due to low humidity, high temperature, and strong winds. The flash droughts were analyzed using hydrometeorological characteristics by comparing Standardized Precipitation Index (SPI), soil moisture, maximum temperature, relative humidity, wind speed, and precipitation. The correlation was analyzed based on the 8 weeks prior to the occurrence of the flash drought, and in most cases, a high correlation of 0.8(-0.8) or higher(lower) was expressed for ESI and SPI, soil moisture, and maximum temperature.

Grapevine Growth and Berry Development under the Agrivoltaic Solar Panels in the Vineyards (영농형 태양광 시설 설치에 따른 포도나무 생육 및 과실 특성 변화 비교)

  • Ahn, Soon Young;Lee, Dan Bi;Lee, Hae In;Myint, Zar Le;Min, Sang Yoon;Kim, Bo Myung;Oh, Wook;Jung, Jae Hak;Yun, Hae Keun
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.356-365
    • /
    • 2022
  • Agrivoltaic systems, also called solar sharing, stated from an idea that utilizes sunlight above the light saturation point of crops for power generation using solar panels. The agrivoltaic systems are expected to reduce the incident solar radiation, the consequent surface cooling effect, and evapotranspiration, and bring additional income to farms through solar power generation by combining crops with solar photovoltaics. In this study, to evaluate if agrivoltaic systems are suitable for viticulture, we investigated the microclimatic change, the growth of vines and the characteristics of grape grown under solar panels set by planting lines compared with ones in open vineyards. There was high reduction of wind speed during over-wintering season, and low soil temperature under solar panel compared to those in the open field. There was not significant difference in total carbohydrates and bud burst in bearing mother branches between plots. Despite high content of chlorophyll in vines grown under panels, there is no significant difference in shoot growth of vines, berry weight, cluster weight, total soluble solid content and acidity of berries, and anthocyanin content of berry skins in harvested grapes in vineyards under panels and open vineyards. It was observed that harvesting season was delayed by 7-10 days due to late skin coloration in grapes grown in vineyards under panels compared to ones grown in open vineyards. The results from this study would be used as data required in development of viticulture system under panel in the future and further study for evaluating the influence of agrivoltaic system on production of crops including grapes.