• 제목/요약/키워드: Surface energy anisotropy

검색결과 46건 처리시간 0.028초

Magnetic and structural properties of ultrathin magnetic films: Ni/Pt(111)

  • Nahm, T.U.;Oh, S.J.
    • 한국진공학회지
    • /
    • 제12권S1호
    • /
    • pp.17-20
    • /
    • 2003
  • We have studied magnetic and structural properties of ultrathin Ni films grown on PI(lII) surface using in situ surface magneto-optic Kerr effect and X-ray photoelectron spectroscopy. Perpendicular magnetic anisotropy was absent, and longitudinal Kerr signal was only detectable for Ni films thicker than 6 monolayers. Enhancement in longitudinal Kerr signal by 30% was achieved by post-annealing at temperatures below 800K, but upon annealing at 820K, surface alloy was formed. By using core-level binding-energy shifts, the composition was determined to be Ni 70 at. %.

Magnetic properties of thin films of a magnetocaloric material FeRh

  • Jekal, Soyoung;Kwon, Oryong
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제2회(2013년)
    • /
    • pp.294-298
    • /
    • 2013
  • A FeRh alloy is a well-known efficient magnetocaloric material and some experimental and theoretical studies of bulk FeRh have been reported already by several groups. In this study we report first-principles calculations on magnetic properties of different thickness FeRh thin films in order to investigate the possibility to enhance further the magnetocaloric efficiency. We used two methods of a Vienna Ab-initio Simulation Package (VASP) code and SIESTA package. We found that the FeRh thin films have quite different magnetic properties from the bulk when the thickness is thinner than 6-atomic-layers. While bulk FeRh has a G-type antiferromagnetic(AFM) state, thin films which are thinner than 6-atomic-layers have an A-type AFM state or a ferromagnetic (FM) state. We will discuss possibility of magnetic phase transitions of the FeRh thin films in the view point of a magnetocaloric effect. And we found 4-, 5-, 6-layers films with Fe surface and 7-layers film with Rh surface are FM and they have relatively small magnetocrystalline anisotropy (MCA) energy about less than 70 meV. The small MCA energy leads to reduction of the strength of magnetic field in operating a magnetic refrigerator.

  • PDF

Study of Anisotropic Photoluminescence and Energy Transfer in Oriented Dye-incorporating Zeolite-L Monolayer

  • Lee, Jin-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권8호
    • /
    • pp.2190-2194
    • /
    • 2010
  • Development of the methods to organize zeolite microcrystals into closely packed and uniformly aligned monolayers on various substrates have been pursued viewing microparticles as a novel class of building blocks. We now report that the vertically aligned zeolite monolayer can be applied as novel supramolecularly organized systems for anisotropic photoluminescence in high dichroic ratio, to study energy transfer dynamics between the internal and external fluorophores, and to develop zeolite-based advanced materials. Study of polarized fluorescence spectroscopy and angle-dependent intensity change with dye molecules in different surroundings further provides insight into molecular interactions that can be used for the future design of optoelectronic device in nanometer size. In addition, this report shows that isolating of organic dye through surface treatment is crucial for preventing the egress of the incorporated dye molecules from the channels of zeolite to the solution and to enhance the anisotropic luminescence.

이온빔 배향에 의한 수직 배향막의 액정 배향 (Vertical Alignment of Liquid Crystal by Ion Beam Irradiation)

  • 강동훈;김병용;김영환;옥철호;한정민;김종환;이상극;서대식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.414-414
    • /
    • 2007
  • In this study, Liquid Crystal (LC) alignment and tilt angle generation in Nematic Liquid Crystal (NLC) with negative dielectric anisotropy on the homeotropic PI surface with new ion beam exposure are reported. Also. high density of ion beam energy (DuoPIGatron type Ar ion gun) is used in this study. The tilt angle of NLC on the homeotropic Polyimide (PI) surface for all incident angles is measured about 38 degree and this has a stabilization trend. And the good LC alignment of NLC on the PI surface with ion beam exposure of $45^{\circ}$ incident angle was observed. Also the tilt angle of NLC on the homeotropic PI surface with ion beam exposure of $45^{\circ}$ had a tendency to decrease as ion beam energy density increase. The tilt angle could be controlled from verticality to horizontality. Also, the LC aligning capabilities of NLC on the homeotropic PI surface according to ion beam energy has the goodness in case of more than 1500 eV. Finally. the superior LC alignment thermal stability on the homeotropic PI surface with ion beam exposure can be achieved. For OCB(Optically Compensated Bend) mode driving, we can need pretilt angles control for fast response time. In this study, We success pretilt angles control. Consequently, this result can be applied for OCB mode.

  • PDF

Yield function of the orthotropic material considering the crystallographic texture

  • Erisov, Yaroslav A.;Grechnikov, Fedor V.;Surudin, Sergei V.
    • Structural Engineering and Mechanics
    • /
    • 제58권4호
    • /
    • pp.677-687
    • /
    • 2016
  • On the basis of the energy approach it is reported a development of the yield function and the constitutive equations for the orthotropic material with consideration of the crystal lattice constants and parameters of the crystallographic texture for the general stress state. For practical use in sheet metal forming analysis it is considered different loading scenarios: plane stress and plane strain states. Using the proposed yield function, the influence of single ideal components on the shape of yield surface was analyzed. The six texture components investigated here were cube, Goss, copper, brass, S and rotated cube, as these components are typically observed in rolled sheets from FCC alloys.

X-ray CT 이미지를 이용한 암석의 특성 평가 방안 (Evaluation Method of Rock Characteristics using X-ray CT images)

  • 김광염;윤태섭
    • 터널과지하공간
    • /
    • 제29권6호
    • /
    • pp.542-557
    • /
    • 2019
  • 암석의 성인과 변성에 따른 내부구조의 마이크로 특성은 암반의 거동 특성에 영향을 미친다. 본 연구에서는 암석 내부의 구성물질의 분포 특성을 반영하는 엑스레이 단층(X-ray CT) 이미지에 기초한 새로운 암석특성의 평가방안을 고찰하였다. 암석의 불균질 특성 및 이방성 특성의 정량화, 암석의 구성광물 입자의 크기분포 및 형상특성, 공극이미지를 이용한 유동해석, 암석내부의 노출되지 않은 절리면 거칠기 평가 등 전통적인 암석의 시험법으로 측정하기 어려웠던 중요한 암석의 특성들이 X-ray CT 이미지의 분석을 통하여 평가될 수 있다.

$90\%$ 단면감소율로 인발된 전해동의 어닐링시 집합조직과 미세조직 발달에 미치는 전단 변형의 영향 (Effects of Shear Strains on the Developement of Texture and Microstructure of $90\%$ Drawn Copper Wire during Annealing)

  • 박현;이동녕
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 제4회 압출 및 인발가공 심포지엄
    • /
    • pp.55-62
    • /
    • 2001
  • An electrolytic copper rod was drawn up to $90\%$ in area reduction and annealed under various conditions. The EBSD measurement of the drawn wire showed that in the center region the <111> + <100> fiber duplex texture was dominant, while in the middle and surface regions relatively defused textures developed with a little higher density in <11w>//wire axis. The inhomogeneous texture in the deformed wire gave rise to the inhomogeneous microstructure and texture after annealing. The annealing texture could be classified into the recrystallization texture developed during low temperatures and at the early stage at a high temperature and the growth texture developed after a prolonged annealing at the high temperature. The recrystallization temperature could be explained by the strain energy release maximization model and the growth texture was discussed based on the grain boundary mobility anisotropy.

  • PDF

A fracture criterion for high-strength steel cracked bars

  • Toribio, J.
    • Structural Engineering and Mechanics
    • /
    • 제14권2호
    • /
    • pp.209-221
    • /
    • 2002
  • In this paper a fracture criterion is proposed for cracked cylindrical samples of high-strength prestressing steels of different yield strength. The surface crack is assumed to be semi-elliptical, a geometry very adequate to model sharp defects produced by any subcritical mechanism of cracking: mechanical fatigue, stress-corrosion cracking, hydrogen embrittlement or corrosion fatigue. Two fracture criteria with different meanings are considered: a global (energetic) criterion based on the energy release rate G, and a local (stress) criterion based on the stress intensity factor $K_I$. The advantages and disadvantages of both criteria for engineering design are discussed in this paper on the basis of many experimental results of fracture tests on cracked wires of high-strength prestressing steels of different yield strength and with different degrees of strength anisotropy.

선박의 저항성능 추정을 위한 EARSM 난류 모형의 활용 (Numerical Prediction of Ship Hydrodynamic Performances using Explicit Algebraic Reynolds Stress Turbulence Model)

  • 김유철;김광수;김진
    • 대한조선학회논문집
    • /
    • 제51권1호
    • /
    • pp.67-77
    • /
    • 2014
  • In this study, Explicit Algebraic Reynolds Stress Model (EARSM) which is based on the existing ${\kappa}-{\omega}$ model has been applied to the flow field analysis around ship hulls. Existing transport equations for the turbulent kinetic energy and the dissipation rate are used in almost the same form and anisotropy terms of Reynolds stresses are newly considered. The well-known KVLCC2 and KCS hull forms are selected as validation cases, which were also used in 2010 Workshop on CFD in Ship Hydrodynamics. In case of KVLCC2 double model, comparison of mean velocity distribution, turbulent kinetic energy, and Reynolds stresses near the propeller plane has been carried out and wave elevation and wave profiles have been additionally studied for KCS and KVLCC2 with free surface models. Some improved results for mean velocity distribution at the propeller plane have been obtained while there is little change in free surface wave profiles.

Nanotribological Properties of Chemically Modified Graphene

  • Kwon, Sangku;Ko, Jae-Hyeon;Byun, Ik-Su;Choi, Jin Sik;Park, Bae Ho;Kim, Yong-Hyun;Park, Jeong Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.159-159
    • /
    • 2013
  • Atomically thin graphene is the ideal model system for studying nanoscale friction due to its intrinsic two-dimensional anisotropy. Furthermore, modulating its tribological properties could be an important milestone for graphene-based micro and nano-mechanical devices. Here, we report that the tribological properties can be easily altered via simple chemical modifications of the graphene surface. Friction force microscopy measurements show that hydrogenated, fluorinated, and oxidized graphenes exhibit, 2-, 6-, and 7-fold enhanced nanoscale friction on their surfaces, respectively, compared to pristine graphene. The measured nanoscale friction should be associated with the adhesive and elastic properties of the chemically modified graphenes. Density functional theory calculations suggest that, while the adhesive properties of chemically modified graphenes are marginally reduced down to ~30%, the out-of-plane elastic properties are drastically increased up to 800%. Based on these findings, we propose that nanoscale friction on graphene surfaces is characteristically different from that on conventional solid surfaces; stiffer graphene exhibits higher friction, whereas a stiffer three-dimensional solid generally exhibits lower friction. The unusual friction mechanics of graphene is attributed to the intrinsic mechanical anisotropy of graphene, which is inherently stiff in plane, but remarkably flexible out of plane. The out-of-plane flexibility can be modulated up to an order of magnitude by chemical treatmentof the graphene surface. The correlation between the measured nanoscale friction and the calculated out-of-plane flexibility suggests that the frictional energy in graphene is mainly dissipated through the out-of-plane vibrations, or the flexural phonons of graphene.

  • PDF