• Title/Summary/Keyword: Surface design

Search Result 8,643, Processing Time 0.041 seconds

Optimal Geometric Design of Linear Motor Using Response Surface Methodology (반응표면분석법을 이용한 리니어모터의 형상최적설계)

  • Lee, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1262-1269
    • /
    • 2005
  • Thrust of linear motor is one of the important factor to specify motor performance. Maximum thrust can be obtained by increasing the current in conductor and is relative to the sizes of conductor and magnet. But, the current and the size of conductor have an effect on temperature of linear motor. Therefore, it is practically important to find design results that can effectively maximize the thrust of linear motor within limited range of temperature. Finite element analysis was applied to calculate thrust and the temperature of the conductor was calculated by the thermal resistance. The diameter of copper wire among design variables has discrete value and number of turns must be integer. Considering these facts, special techinque for optimum design is presented. To reduce excessive computation time of thrust in optimization, the design variables was redefined by analysis of variance and second order regression model for thrust was determined by response surface metheodology. As a result, it is shown that the proposed method has an advantage in optimum design of linear motor.

The scarf design expressing the cube form space change (큐브 형태의 공간 변화를 표현한 스카프 디자인)

  • Park, Sang- Eun
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.22 no.4
    • /
    • pp.93-104
    • /
    • 2020
  • This paper focuses on the spatial changes that create a three-dimensional or deep feeling on the surface of a scarf centering on the cube shape. Through this, consumers with various tastes were able to satisfy their image presentation. The cube form has simplicity and order and is likely to be used as a formative object. The cube shapes can be expressed in various forms through visual and perceptual spatial changes by presenting various shape changes based on the viewpoint of the two-dimensional silk surface, that is, by changing the eyes' position and orientation. Various visual theorists' discussions about cube-shaped visual changes were discussed. In addition, the three-dimensional spatial illusion caused by the shape and color of Victor Bazaarelli's cube was examined. The cube shape was printed silk surfaces to give a three-dimensional sense of space on a two-dimensional scarf design using the size change, the difference in the length of the line, and the color change. As such, the cube shape has infinite possibilities as a method that can express three-dimensional depth and space on the flat surface of a scarf. Therefore, it is hoped that this study will be applied to various aspects as the basic data for the scarf design that expresses the spatial changes in the form of cubes.

Optical Design of Reflector of Automotive Headlamp (자동차 헤드램프 반사경의 광학 설계)

  • 사종엽;박정공
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.190-196
    • /
    • 2004
  • ACR(All Clear Reflector), also widely referred to as FFR(Free Form Reflector), were designed in general and intelligent ways using a NUDBS surface for the mathematical modelling of the reflector shape and artificial intelligence as the optimum design algorithm. An ACR, which consists of a continuous surface reflector and clear outer lens, offers styling advantages and provides a high quality light performance. The clear outer lens of an ACR remains efficient even with a highly inclined shape, as in the design of a sports car, as well as the complete clearness of the reflector surface eliminates the nuisance of stray light caused by the steps between adjacent segments of multi-faced reflectors. The application of an ACR to low beam lamp was so sucessful to obtain the sharp cut-off with the lens-free single-surfaced-smooth reflector. The design technique of ACR was tested with all types of lamps, including low beams, high beams, and fog lamps.

LDM Design for Reduction of Mover Mass Using RSM(Response Surface Methodology) (RSM(Response Surface Methodology)를 적용한 선형직류전동기(LDM)의 가동자 중량 저감 최적화 설계)

  • Nam, Hyuk;Kim, Young-Kyoun;Chang, Ki-Chan;Hong, Jung-Pyo;Park, Jae-Wan
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.964-966
    • /
    • 2002
  • This paper presents a magnet circuit design procedure to reduce mover mass of the moving coil type linear direct motor (LDM). The procedure of optimization is based on the response surface methodology (RSM) and Sequential Quadratic Problem (SQP). This procedure of optimization is verified by the comparison of the result of the initial design between the result of the optimum design.

  • PDF

An Experimental Study on method of Design-Concrete & Development of Design-Form used Building Wall (건축벽체용 문양거푸집 개발을 통한 의장콘크리트 공법 연구)

  • 임현준;김종원;조상영;김우재;김성식;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.501-506
    • /
    • 2002
  • Contemporary architecture calls for a wide range of surface textures and treatments. A surface compatible with the architect's design may vary from a glass-smooth finish to one requiring special sculptured ornamentation. These surfaces require many different types of form sheathing and lining. The purpose of study development new design form and made elaborateness shape. Easy to used in field that architecture finish material not used expect effective reduce of working hours, personnel expenses, architecture finish material, cost. After this, building wall apply a variety shape in concrete surface

  • PDF

Optimum Design of a Perpendicular Permanent Magnet Double-sided Linear Synchronous Motor using Response Surface Method (반응표면법을 이용한 수직배열형 양측식 영구자석 선형 동기전동기의 최적설계)

  • Kim, Chang-Eob
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.2
    • /
    • pp.26-30
    • /
    • 2016
  • This paper presented an optimum design of a perpendicular PMDSLSM (Permanent Magnet Double-sided Linear Synchronous Motor) to minimize the detent force. As an optimum method, the response surface method was used and 3D finite element method for the calculation. The design variables of the machine were the primary core width and thickness, and magnet width, thickness and length. Object functions were to minimize the detent force and maximize the thrust of the basic model. The results showed that the thrust force of the optimum design increased from 82.1N to 90.2N and detent force decreased from 15.2N to 2.8N, respectively, compared to the basic model.

Optimal Shape of a Parallel-Flow Heat Exchanger by Using a Response Surface Method (반응표면법을 이용한 평행류 열교환기의 형상 최적화)

  • Oh, Seok-Jin;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.296-303
    • /
    • 2004
  • The heat and flow characteristics in a single-phase parallel-flow heat exchanger was examined numerically to obtain its optimal shape. A response surface method was introduced to approximately predict its performance with respect to the design parameters over the design domain. The inflow/outflow angle of the working fluid, the location of inlet/outlet, the protruding height of flat tube and the height of header were chosen as a design parameter The evaluation of the relative importance of the design parameters was performed based on a sensitivity analysis. An efficiency index was used as an evaluation characteristics value to simultaneously consider both the heat transfer and the pressure drop. The efficiency index of the optimum model, compared to that of the base model, was increased by 9.3%.

Computer-aided Design and Fabrication of Bio-mimetic Scaffold for Tissue Engineering Using the Triply Periodic Minimal Surface (삼중 주기적 최소곡면을 이용한 조직공학을 위한 생체모사 스캐폴드의 컴퓨터응용 설계 및 제작)

  • Yoo, Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.7
    • /
    • pp.834-850
    • /
    • 2011
  • In this paper, a novel tissue engineering scaffold design method based on triply periodic minimal surface (TPMS) is proposed. After generating the hexahedral elements for a 3D anatomical shape using the distance field algorithm, the unit cell libraries composed of triply periodic minimal surfaces are mapped into the subdivided hexahedral elements using the shape function widely used in the finite element method. In addition, a heterogeneous implicit solid representation method is introduced to design a 3D (Three-dimensional) bio-mimetic scaffold for tissue engineering from a sequence of computed tomography (CT) medical image data. CT image of a human spine bone is used as the case study for designing a 3D bio-mimetic scaffold model from CT image data.

Geometric Modeling and Five-axis Machining of Tire Master Models

  • Lee, Cheol-Soo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.75-78
    • /
    • 2008
  • Tire molds are manufactured by aluminum casting, direct five-axis machining, and electric discharging machining. Master models made of chemical wood are necessary if aluminum casting is used. They are designed with a three-dimensional computer-aided design system and milled by a five-axis machine. In this paper, a method for generating and machining a tire surface model is proposed and demonstrated. The groove surfaces, which are the main feature of the tire model, are created using a parametric design concept. An automatically programmed tool-like descriptive language is presented to implement the parametric design. Various groove geometries can be created by changing variables. For convenience, groove surfaces and raw cutter location (CL) data are generated in two-dimensional drawing space. The CL data are mapped to the tread surface to obtain five-axis CL data to machine the master model. The proposed method was tested by actual milling using the five-axis control machine. The results demonstrate that the method is useful for manufacturing a tire mold.

Reliability-Based Optimal Design of Pillar Sections Considering Fundamental Vibration Modes of Vehicle Body Structure (차체 기본 진동 모드를 고려한 필러 단면의 신뢰성 최적설계)

  • Lee Sang Beom;Yim Hong Jae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.6
    • /
    • pp.107-113
    • /
    • 2004
  • This paper presents the pillar section optimization technique considering the reliability of the vehicle body structure consisted of complicated thin-walled panels. The response surface method is utilized to obtain the response surface models that describe the approximate performance functions representing the system characteristics on the section properties of the pillar and on the mass and the natural frequencies of the vehicle B.I.W. The reliability-based design optimization on the pillar sections Is performed and compared with the conventional deterministic optimization. The FORM is applied for the reliability analysis of the vehicle body structure. The developed optimization system is applied to the pillar section design considering the fundamental natural frequencies of passenger car body structure. By applying the proposed RBDO technique, it can be possible to optimize the pillar sections considering the reliability that engineers require.