• Title/Summary/Keyword: Surface design

Search Result 8,570, Processing Time 0.033 seconds

Efficient Algorithm for Real-time Generation of Reflection Lines

  • Kim, Tae-wan;Juyup Kang;Lee, Kunwoo;Park, Sangkun
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.160-171
    • /
    • 2001
  • Depending upon the method of the surface generation and the quality of the designed boundary curves, the resulting surfaces may have global or local irregularities in many cases. Thus, it would be necessary for the designer to evaluate the surface quality and to modify the surface. This is very important because the defect of the surface causes the rework of the dies, increasing cost and delivery time significantly. To simulate the reflection line test in the actual production line, a faster algorithm for generating reflection lines is presented. In this paper, among various surface interrogation methods using reflection lines, Blinn-Newell type of reflection mapping is applied to generate the reflection lines on the trimmed NURBS surfaces. The derivation of reflection lines is formulated as a surface-plane intersection problem (Jung 1994) and is solved by surface-contouring techniques. Also, for eliminating the discontinuity of reflection lines due to the configuration of reflection map, a modified reflection map is proposed. An efficient traced contouring technique is utilized for the computational efficiency and proves to be well suited for the real-time quality-assessment task.

  • PDF

Influence of Selective Oxidation Phenomena in CGLs on Galvanized Coating Defects Formation

  • Gong, Y.F.;Birosca, S.;Kim, Han S.;De Cooman, B.C.
    • Corrosion Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • The gas atmosphere in continuous annealing and galvanizing lines alters both composition and microstructure of the surface and sub-surface of sheet steel. The formation and morphology of the oxides of alloying elements in High Strength Interstitial Free (HS-IF), Dual Phase (DP) and Transformation-Induced Plasticity (TRIP) steels are strongly influenced by the furnace dew point, and the presence of specific oxide may result in surface defects and bare areas on galvanized sheet products. The present contribution reviews the progress made recently in understanding the selective formation of surface and subsurface oxides during annealing in hot dip galvanizing and conventional continuous annealing lines. It is believed that the surface and sub-surface composition and microstructure have a pronounced influence on galvanized sheet product surface quality. In the present study, it is shown that the understanding of the relevant phenomena requires a combination of precise laboratory-scale simulations of the relevant technological processes and the use of advanced surface analytical tools.

Automatic Local Update of Triangular Mesh Models Based on Measurement Point Clouds (측정된 점데이터 기반 삼각형망 곡면 메쉬 모델의 국부적 자동 수정)

  • Woo, Hyuck-Je;Lee, Jong-Dae;Lee, Kwan-H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.5
    • /
    • pp.335-343
    • /
    • 2006
  • Design changes for an original surface model are frequently required in a manufacturing area: for example, when the physical parts are modified or when the parts are partially manufactured from analogous shapes. In this case, an efficient 3D model updating method by locally adding scan data for the modified area is highly desirable. For this purpose, this paper presents a new procedure to update an initial model that is composed of combinatorial triangular facets based on a set of locally added point data. The initial surface model is first created from the initial point set by Tight Cocone, which is a water-tight surface reconstructor; and then the point cloud data for the updates is locally added onto the initial model maintaining the same coordinate system. In order to update the initial model, the special region on the initial surface that needs to be updated is recognized through the detection of the overlapping area between the initial model and the boundary of the newly added point cloud. After that, the initial surface model is eventually updated to the final output by replacing the recognized region with the newly added point cloud. The proposed method has been implemented and tested with several examples. This algorithm will be practically useful to modify the surface model with physical part changes and free-form surface design.

CAE Solid Element Mesh Generation from 3D Laser Scanned Surface Point Coordinates

  • Jarng S.S.;Yang H.J.;Lee J.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.3
    • /
    • pp.162-167
    • /
    • 2005
  • A 3D solid element mesh generation algorithm was newly developed. 3D surface points of global rectangular coordinates were supplied by a 3D laser scanner. The algorithm is strait forward and simple but it generates hexahedral solid elements. Then, the surface rectangular elements were generated from the solid elements. The key of the algorithm is elimination of unnecessary elements and 3D boundary surface fitting using given 3D surface point data.

A Study on Fabric Effects on Contemporary Architectural Surfaces, Based on the Material Characteristics

  • Kim, Sung-Wook;Lee, So-Jung;Jeon, You-Chang
    • Architectural research
    • /
    • v.18 no.1
    • /
    • pp.31-38
    • /
    • 2016
  • The surface design in architecture plays a role as an indicator that symbolizes cultures and styles, in accordance with the course of history and the standards of the time. The surface design that determines the facade of an architectural structure allows us to have a more clear understanding about the functions, programs and structures, as well as the periodical concept of the architects than any other components of the architecture. The purpose of this paper was to examine how architectural surface designs were realized, using commonly-used materials. This study provides meaningful implications, in that it suggests common features in terms of design methodologies (between architecture and non-architecture fields), and presented new possibilities for contemporary architectural surface designs through the classification of building system methods depending on fabric properties, and through the case study analysis of architectural surface designs; in addition, the results of this study could be utilized as basic data for future studies on the possibility of the expression of surface designs across a broader domain.

Efficient generation of reflection lines to evaluate car body surfaces (자동차 외형설계곡면의 검사를 위한 효율적인 반사선의 생성)

  • 최인진;이건우
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.3
    • /
    • pp.133-141
    • /
    • 1997
  • In the process of car body design, various surfaces are generated from the given boundary curves. Depending upon the method of the surface generation and the quality of the boundary curves provided, the resulting surfaces may have global or local irregularities in many cases. Thus it would be necessary for the designer to evaluate the surface quality and to modify the surface or to use the different generation method based on the evaluation results. This capability is very important because the defect of the surface quality detected in the production stage will require the rework of the dies and will cause a big loss in cost and time. A method of surface interrogation using reflection line is introduced. In this paper, We applied reflection mapping to generate reflection lines on the trimmed NURBS surface. Since reflection lines are obtained from reflection mapping that uses simple and physically acceptable mapping algorithm, they can be efficiently used to simulate the reflection test on the real part in the production line.

  • PDF

Design of an Algorithm to Simulate Surface Roughness in a Turning for an Integrated Machining Simulation System (통합절삭 시뮬레이션 시스템용 선삭표면조도 시뮬레이션 알고리즘의 설계)

  • 장동영
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.1
    • /
    • pp.19-33
    • /
    • 1999
  • The fundamental issues to evaluate machine tools performance through simulation pertain to the physical models of the machine tool itself and of process while the practical problems are related to the development of the modular software structure. It allows the composition of arbitrary machine/process models along with the development of programs to evaluate each state of machining process. Surface roughness is one of the fundamental factors to evaluate machining process and performance of machine tool, but it is not easy to evaluate surface roughness due to its tribological complexity. This paper presents an algorithm to calculate surface roughness considering cutting geometry, cutting parameters, and contact dynamics of cutting between tool and workpiece as well as tool wear in turning process. This proposed algorithm could be used in the designed virtual machining system. The system can be used to evaluate the surface integrity of a turned surface during the design and process planning phase for the design for manufacturability analysis of the concurrent engineering.

  • PDF

Application of Statistical Analysis for Working Factors Effect of High Speed End-Milling for STD61 (열간금형용강의 고속 엔드밀 가공인자의 영향에 대한 통계적 분석의 적용)

  • Bae, Hyo-Jun;Lee, Sang-Jae;Woo, Kyu-Sung;Park, Heung-Sik
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1148-1153
    • /
    • 2004
  • Recently the high speed end-milling processing is demanded the high-precise technique with good surface rougj1ness and rapid time in aircraft, automobile part and molding industry. The working factors of high speed end-milling has an effect on surface roughness of cutting surface. Therefore this study was carried out to analyze the working factors to get the optimum surface roughness by design of experiment. From this study, surface roughness have an much effect according to priority on Spindle speed, feed rale, hardness and axial depth of cut By design of experiment, it is effectively represented shape characteristics of surface roughness in high speed end-milling And determination($R^2$) coefficient of regression equation had a satisfactory reliability of 89.7% and regression equation of surface roughness is made by regression analysis.

  • PDF

An algorithm for estimating surface normal from its boundary curves

  • Park, Jisoon;Kim, Taewon;Baek, Seung-Yeob;Lee, Kunwoo
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.1
    • /
    • pp.67-72
    • /
    • 2015
  • Recently, along with the improvements of geometry modeling methods using sketch-based interface, there have been a lot of developments in research about generating surface model from 3D curves. However, surfacing a 3D curve network remains an ambiguous problem due to the lack of geometric information. In this paper, we propose a new algorithm for estimating the normal vectors of the 3D curves which accord closely with user intent. Bending energy is defined by utilizing RMF(Rotation-Minimizing Frame) of 3D curve, and we estimated this minimal energy frame as the one that accords design intent. The proposed algorithm is demonstrated with surface model creation of various curve networks. The algorithm of estimating geometric information in 3D curves which is proposed in this paper can be utilized to extract new information in the sketch-based modeling process. Also, a new framework of 3D modeling can be expected through the fusion between curve network and surface creating algorithm.

A Linear Sliding Surface Design Method for a Class of Uncertain Systems with Mismatched Uncertainties (불확실성이 매칭조건을 만족시키지 않는 선형 시스템을 위한 슬라이딩 평면 설계 방법)

  • 최한호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.11
    • /
    • pp.861-867
    • /
    • 2003
  • We propose a sliding surface design method for linear systems with mismatched uncertainties in the state space model. In terms of LMIs, we derive a necessary and sufficient condition for the existence of a linear sliding surface such that the reduced-order equivalent sliding mode dynamics restricted to the linear sliding surface is not only stable but completely invariant to mismatched uncertainties. We give an explicit formula of all such linear switching surfaces in terms of solution matrices to the LMI existence condition. We also give a switching feedback control law, together with a design algorithm. Additionally, we give some hints for designing linear switching surfaces guaranteeing pole clustering constraints or linear quadratic performance bound constraints. Finally, we give a design example in order to show the effectiveness of the proposed methodology.