• Title/Summary/Keyword: Surface curvature

Search Result 632, Processing Time 0.026 seconds

A Study on the Visualization of Ship Hull using Computer Graphics Techniques (컴퓨터 그래픽스 기법을 이용한 선체곡면 가시화 연구)

  • H. Shin;K.W. Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.3
    • /
    • pp.15-20
    • /
    • 1992
  • This paper outlines the methods of visualizing 3-dimensional free form surfaces employing the Painter's algorithm, especially for the ship hull forms which are defined as open uniform Bi-cubic B-spline surfaces. The computer graphic codes are developed for the transparent wire-frame, the hidden surface removal and the shading visualization techniques, The codes are applied to the ship hull 3-dimensional surface visualization and the color graphic figures are displayed. Also Gaussian curvature is displayed on the color plots of the isoparametric net of the ship hull surface.

  • PDF

Slope Change of Surface Texturing Pattern Using Grinding (연삭을 이용한 Surface Texturing에서 패턴의 기울기 변화)

  • Jeong, Ji-Yong;Zhen, Yu;Ullah, Sahar M. Sana;Ko, TaeJo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.8-15
    • /
    • 2016
  • Most machines lose a lot of energy due to friction. Wear due to friction also reduces performance. Therefore, it is important to reduce friction on the surface to improve energy efficiency and decrease wear. Surface texturing refers to making patterns on the surface for reducing friction. There are many surface texturing methods, such as using lasers, abrasive jet machining, and so on. Recently, mechanical manufacturing methods, such as cutting and grinding, have been highlighted. Among them, the grinding method has the advantage of making patterns in large areas quickly. Therefore, it is appropriate for surface texturing on large machines. This paper is a study on the slope change of the surface texturing pattern using grinding. Therefore, we researched the slopes of the patterns corresponding to "spindle speed and feed rate" and "curvature of workpiece surface" using a mathematical model and experiment. As a result, we made a proper mathematical model concerning our research. Therefore, using the mathematical model in this paper, we could predict the slope change of the pattern according to grinding conditions.

EFFECT OF ANTICURVATURE FILING METHOD ON PREPARATION OF THE CURVED ROOT CANAL USING PROFILE (PROFILE을 이용한 근관형성 시 ANTICURVATURE FILING방법의 영향)

  • Song, Hyun-Ji;Chang, Ju-Hea;Cho, Kyung-Mo;Kim, Jin-Woo
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.4
    • /
    • pp.327-334
    • /
    • 2005
  • This study investigated the effect of anticurvature filing method on preparation of the curved root canal using ProFile. Thirty six resin blocks were divided equally into three groups by instrumentation motions: anticurvature filing motion. circumferential filing motion and straight up-and-down motion. Each resin block was sectioned at 8mm level from the apex and at the greatest curvature of the canal and reassembled in metal mold by a modified Bramante technique. All groups were instrumented with the ProFile system. At each levels. image of sectioned surface were taken using CCD camera under a stereomicroscope at $\times40$ magnification and stored. Distances of transportation at the inner and outer area of curvature and the centering ratio were determined and compared by statistical analysis. along with the assessment of the increase of root canal cross-sectional area. The results were as follows; 1. In all groups. there was no statistical difference in the mean increase of root canal cross-sectional area. the centering ratio. and the mean distances of transportation at the inner area of curvature at each level. 2. At 8mm level from the apex. the mean distances of transportation at the outer area of curvature decreases in following order anticurvature filing motion. circumferential filing motion. straight up-and­down motion but. no significant difference at the greatest curvature of the canal among three groups. Effect of anticurvature filing motion using ProFile does not seem to be different from other instrumentation motions at the inner area of curvature in curved root canal.

3D Face Recognition in the Multiple-Contour Line Area Using Fuzzy Integral (얼굴의 등고선 영역을 이용한 퍼지적분 기반의 3차원 얼굴 인식)

  • Lee, Yeung-Hak
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.4
    • /
    • pp.423-433
    • /
    • 2008
  • The surface curvatures extracted from the face contain the most important personal facial information. In particular, the face shape using the depth information represents personal features in detail. In this paper, we develop a method for recognizing the range face images by combining the multiple face regions using fuzzy integral. For the proposed approach, the first step tries to find the nose tip that has a protrusion shape on the face from the extracted face area and has to take into consideration of the orientated frontal posture to normalize. Multiple areas are extracted by the depth threshold values from reference point, nose tip. And then, we calculate the curvature features: principal curvature, gaussian curvature, and mean curvature for each region. The second step of approach concerns the application of eigenface and Linear Discriminant Analysis(LDA) method to reduce the dimension and classify. In the last step, the aggregation of the individual classifiers using the fuzzy integral is explained for each region. In the experimental results, using the depth threshold value 40 (DT40) show the highest recognition rate among the regions, and the maximum curvature achieves 98% recognition rate, incase of fuzzy integral.

  • PDF

Effects of Organic Additives on Residual Stress and Surface Roughness of Electroplated Copper for Flexible PCB

  • Kim, Jongsoo;Kim, Heesan
    • Corrosion Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.154-158
    • /
    • 2007
  • For the application of flexible printed circuit board (FPCB), electroplated copper is required to have low surface roughness and residual stress. In the paper, the effects of surface roughness and residual stress of electroplated copper as thick as $8{\mu}m$ were studied on organic additives such as inhibitor, leveler and accelerator. Polyimide film coated with sputtered copper was used as a substrate. Surface roughness and surface morphology were measured by 3D-laser surface analysis and FESEM, respectively. Residual stress was calculated by Stoney's equation after measuring radius curvature of specimen. The addition of additives except high concentration of accelerator in the electrolyte decreased surface roughness of electroplated copper film. Such a tendency was explained by the function of additives among which the inhibitor and the leveler inhibit electroplating on a whole surface and prolusions, respectively. The accelerator plays a role in accelerating the electroplating in valley parts. The inhibitors and the leveler increased residual stress, whereas the accelerator decreased it. It was thought to be related with entrapped additives on electroplated copper film rather than the preferred orientation of electroplated copper film. The reason why additives lead to residual stress remains for the future work.

Numerical Wear Analysis of a Three-dimensional Rough Surface (수치적 방법을 이용한 3차원 거친 표면의 마모 해석)

  • Kim, Yunji;Suh, Junho;Kim, Bongjun;Yu, Yonghun
    • Tribology and Lubricants
    • /
    • v.36 no.4
    • /
    • pp.232-243
    • /
    • 2020
  • It is essential to predict the amount of wear and surface parameters for a surface where relative motion occurs. In the asperity-based model for wear prediction, only the average contact pressure can be obtained. Hence, the accuracy of wear analysis is poor. In this study, DC-FFT is used to obtain the pressure of each node, and wear analysis is performed by considering the effect of the pressure gradient. The numerical surface generation method is used to create Gaussian, negatively skewed, and positively skewed surfaces for wear analysis. The spatial and height distributions of each surface are analyzed to confirm the effectiveness of the generated surface. Furthermore, wear analysis is performed using DC-FFT and Archard's wear formula. After analysis, it is confirmed that all peaks are removed and only valleys remain on the surface. The RMS roughness and Sk continue to decrease and Ku increases as the cycle progresses. It is observed that the surface parameters are significantly affected by the radius of curvature of the asperity. This analysis method is more accurate than the existing average wear and truncation models because the change in asperity shape during the wear process is reflected in detail.

Heat transfer coefficient measurement by a jet impinging on a rib-roughened convex surface (표면조도를 가지는 볼록한 면에 충돌하는 제트에 의한 열전달계수 측정)

  • Jeong, Yeong-Seok;Lee, Dae-Hui;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.3
    • /
    • pp.373-385
    • /
    • 1998
  • The local Nusselt numbers have been measured for a round turbulent jet impinging on the convex surface with and without rib. Liquid crystal/transient method was used to determine the Nusselt number distributions along the surface. The temperature on the surface was measured to within .+-.0.25 deg. C accuracy using liquid crystal and a digital color image processing system. The experiments were made for the jet Reynolds number (Re) 23,000, the dimensionless nozzle-to-surface distance (L/d) from 6 to 10, the dimensionless surface curvature (d/D) 0.056, and the various rib types (height(d$_{1}$) from 1 to 2 mm, pitch (p) from 6 to 32 mm). It was found that the average Nusselt numbers on the convex surface with rib are higher than those without rib, mainly due to an increase in the turbulent intensity caused by flow separation, recirculation and reattachment on the wall surface. In addition, we compared the results by the steady-state method using the gold-film Intrex with those by the transient method.

The Implementation of an Roof Structure Generating Tool based on the Structural Analysis of Roof Curvature in Traditional Buildings (전통건축 지붕곡 구조분석을 통한 지붕가구부 설계도구의 구현)

  • Lee, Hyunmin;Ahn, Eunyoung
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.3
    • /
    • pp.393-404
    • /
    • 2014
  • This research proposes a method to draw a number of components for roof frame in 3D datum. It is based on the analysis of the roof curvature and their geometric relationship in the traditional wooden buildings. Correlations between the components that generate a roof surface is defined with functional formula. The design system which automatically generates 3D datum for the components is implemented by reflecting the structural mechanics for them. The suggested system provides a control function to easily draw a traditional house. In this system, the components engaged in forming a roof surface are not only automatically generated but also simply modified according to the user's request. It would improves design efficiency and ensure a various roof surface design. Furthermore it makes possible systematic drawing and standardized industrial processing. Consequently, the proposed method is expected to contribute to the popularization of traditional house constructing.

Mechanism of the X-ray and Soft Gamma-ray Emissions from the High Magnetic Field Pulsar: PSR B1509-58

  • Wang, Yu;Takata, Jumpei;Cheng, Kwong Sang
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.91-94
    • /
    • 2013
  • We use the outer gap model to explain the spectrum and the energy dependent light curves of the X-ray and soft ${\gamma}$-ray radiations of the spin-down powered pulsar PSR B1509-58. In the outer gap model, most pairs inside the gap are created around the null charge surface and the gap's electric field separates the opposite charges to move in opposite directions. Consequently, the region from the null charge surface to the light cylinder is dominated by the outflow current and that from the null charge surface to the star is dominated by the inflow current. We suggest that the viewing angle of PSR B1509-58 only receives the inflow radiation. The incoming curvature photons are converted to pairs by the strong magnetic field of the star. The X-rays and soft ${\gamma}$-rays of PSR B1509-58 result from the synchrotron radiation of these pairs. The magnetic pair creation requires a large pitch angle, which makes the pulse profile of the synchrotron radiation distinct from that of the curvature radiation. We carefully trace the pulse profiles of the synchrotron radiation with different pitch angles. We find that the differences between the light curves of different energy bands are due to the different pitch angles of the secondary pairs, and the second peak appearing at E > 10 MeV comes from the region near the star, where the stronger magnetic field allows the pair creation to happen with a smaller pitch angle.

A Comparative Study on Structural Reliability Analysis Methods (구조 신뢰성 해석방법의 고찰)

  • 양영순;서용석
    • Computational Structural Engineering
    • /
    • v.7 no.1
    • /
    • pp.109-116
    • /
    • 1994
  • In this paper, various reliability analysis methods for calculating a probability of failure are investigated for their accuracy and efficiency. Crude Monte Carlo method is used as a basis for the comparison of various numerical results. For the sampling methods, Importance Sampling method and Directional Simulation method are considered for overcoming a drawback of Crude Monte Carlo method. For the approximate methods, conventional Rackwitz-Fiessler method. 3-parameter Chen-Lind method, and Rosenblatt transformation method are compared on the basis of First order reliability method. As a Second-order reliability method, Curvature-Fitting paraboloid method, Point-fitting paraboloid method, and Log-likelihood function method are explored in order to verify the accuracy of the reliability calculation results. These methods mentioned above would have some difficulty unless the limit state equation is expressed explicitly in terms of random design variables. Thus, there is a need to develop some general reliability methods for the case where an implicit limit state equation is given. For this purpose, Response surface method is used where the limit state equation is approximated by regression analysis of the response surface outcomes resulted from the structural analysis. From the application of these various reliability methods to three examples, it is found that Directional Simulation method and Response Surface method are very efficient and recommendable for the general reliability analysis problem cases.

  • PDF