• Title/Summary/Keyword: Surface conductivity

Search Result 1,542, Processing Time 0.03 seconds

Effects of Y2O3 Addition on Densification and Thermal Conductivity of AlN Ceramics During Spark Plasma Sintering (Y2O3 첨가가 AlN 세라믹스의 방전 플라즈마 소결 거동 및 열전도도에 미치는 영향)

  • Chae, Jae-Hong;Park, Joo-Seok;Ahn, Jong-Pil;Kim, Kyoung-Hun;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.12
    • /
    • pp.827-831
    • /
    • 2008
  • Spark plasma sintering (SPS) of AlN ceramics were carried out with ${Y_2}{O_3}$ as sintering additive at a sintering temperature $1,550{\sim}1,700^{\circ}C$. The effect of ${Y_2}{O_3}$ addition on sintering behavior and thermal conductivity of AlN ceramics was studied. ${Y_2}{O_3}$ added AlN showed higher densification rate than pure AlN noticeably, but the formation of yttrium aluminates phases by the solid-state reaction of ${Y_2}{O_3}$ and ${Al_2}{O_3}$ existed on AlN surface could delay the densification during the sintering process. The thermal conductivity of AlN specimens was promoted by the addition of ${Y_2}{O_3}$ up to 3 wt% in spite of the formation of YAG secondary phase in AlN grain boundaries because ${Y_2}{O_3}$ addition could reduced the oxygen contents in AlN lattice which is primary factor of thermal conductivity. However, the thermal conductivity rather decreased over 3 wt% addition because an immoderate formation of YAG phases in grain boundary could decrease thermal conductivity by a phonon scattering surpassing the contribution of ${Y_2}{O_3}$ addition.

In-situ spectroscopic studies of SOFC cathode materials

  • Ju, Jong-Hun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.70.1-70.1
    • /
    • 2012
  • In-situ X-ray photoelectron spectroscopy (XPS) and infrared (IR) spectroscopy studies of SOFC cathode materials will be discussed in this presentation. The mixed conducting perovskites (ABO3) containing rare and alkaline earth metals on the A-site and a transition metal on the B-site are commonly used as cathodes for solid oxide fuel cells (SOFC). However, the details of the oxygen reduction reaction are still not clearly understood. The information about the type of adsorbed oxygen species and their concentration is important for a mechanistic understanding of the oxygen incorporation into these cathode materials. XPS has been widely used for the analysis of adsorbed species and surface structure. However, the conventional XPS experiments have the severe drawback to operate at room temperature and with the sample under ultrahigh vacuum (UHV) conditions, which is far from the relevant conditions of SOFC operation. The disadvantages of conventional XPS can be overcome to a large extent with a "high pressure" XPS setup installed at the BESSY II synchrotron. It allows sample depth profiling over 2 nm without sputtering by variation of the excitation energy, and most importantly measurements under a residual gas pressure in the mbar range. It is also well known that the catalytic activity for the oxygen reduction is very sensitive to their electrical conductivity and oxygen nonstoichiometry. Although the electrical conductivity of perovskite oxides has been intensively studied as a function of temperature or oxygen partial pressure (Po2), in-situ measurements of the conductivity of these materials in contact with the electrolyte as a SOFC configuration have little been reported. In order to measure the in-plane conductivity of an electrode film on the electrolyte, a substrate with high resistance is required for excluding the leakage current of the substrate. It is also hardly possible to measure the conductivity of cracked thin film by electrical methods. In this study, we report the electrical conductivity of perovskite $La_{0.6}Sr_{0.4}CoO_{3-{\delta}}$ (LSC) thin films on yttria-stabilized zirconia (YSZ) electrolyte quantitatively obtained by in-situ IR spectroscopy. This method enables a reliable measurement of the electronic conductivity of the electrodes as part of the SOFC configuration regardless of leakage current to the substrate and cracks in the film.

  • PDF

A Study on the Thermal Performance of Embossing Surface Sandwich Panel

  • Son, Cheol-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.2
    • /
    • pp.69-76
    • /
    • 2001
  • The purpose of this research is to investigate the thermal performance of embossing surface sandwich panel and flat surface sandwich panel. To do this research, thermal performances in summer season at the six points of embossing surface sandwich panel and flat surface sandwich panel are investigated focusing on the temperature. Three kinds of embossing surface sandwich panel and one kind of flat surface sandwich panel are used for this research. At the same size of sandwich panel, the average temperature differences of flat surface sandwich panel between average temperature at the 0.5 mm below copper plate and average outside air temperature and surface temperature are higher than those of embossing surface sandwich panel. The average heat transfer rate of flat surface sandwich panel in higher than that of embossing surface sandwich panel. More study will be needed about the size of diameter and height of embossing, and materials of embossing surface sandwich panel.

  • PDF

A study on the Fabrication of Graded-Boundary Ni-Cr/Steel Material by Laser Beam (레이저빔에 의한 계면경사 Ni-Cr/steel 재료 제조에 관한 연구)

  • 김재현;김도훈
    • Laser Solutions
    • /
    • v.3 no.1
    • /
    • pp.29-37
    • /
    • 2000
  • For a development purpose of thick metal / metal Graded-Boundary Materials(GBM), a basic research on the fabrication of Ni-Cr/steel GBM was carried out by a laser beam and its mechanical properties and thermal characteristics were investigated. In order to produce a compositionally graded boundary region between substrate steel and added Ni-Cr alloy, a series of surface alloying treatments was performed with a high power CO$_2$ laser beam. Ni-Cr sheet was placed on a low carbon steel plate(0.18%C), and then a CO$_2$ laser beam was irradiated on the surface to produce a homogeneous alloyed layer. On this first surface-alloyed layer, another Ni-Cr sheet was placed and then the CO$_2$ laser beam was irradiated again to produce second surface-alloyed layer. Sequential repetitions of laser surface alloying treatment 4 times resulted in a graded-boundary region with the thickness of about 1.4mm. Simultaneous concentration profiles of different kinds of alloying elements(Ni and Cr) showed from 42%Ni, 45%Cr and 13%Fe on surface region to 0%Ni, 0%Cr and 99%Fe in substrate region. Also a thermal conductivity gradient resulted in graded-region and its value changed from 0.03㎈/cm s$\^{C}$ in surface region to 0.1㎈/cm s$\^{C}$ in substrate region. Microstructural observation showed that any visible root porosities and solidification shrinkage cracks were not formed in graded region between alloyed layer and substrate region during rapid cooling.

  • PDF

The effect of annealing temperature and Ta layer on the electric conductivity of Au thin film deposited by the magnetron sputtering (마그네트론 스퍼터링법으로 증착한 Au 박막의 전기전도특성에 미치는 열처리 온도와 Ta 삽입층의 영향)

  • Choi, Hyeok-Cheol;You, Chun-Yeol
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.6
    • /
    • pp.433-438
    • /
    • 2007
  • We fabricated thin films of Au and Ta/Au with thicknesses of 30 nm and 5 nm/30nm, respectively on Si(100) or Si(111) substrates using a dc magnetron sputtering system. Grain sizes, roughness and conductivity for Au thin films are measured as a function of the annealing temperatures. We observed that the grain size of samples enlarged and the surface became rougher with increasing annealing temperature. The grain size and roughness were improved in the structure of Si/Ta/Au than Si/Au. Furthermore, the Si(100) substrate was more effective for decreasing the resistance for Ta/Au system than Si(111) substrate. We confirm that by inserting a Ta buffer layer in Si(100)/Au, surface roughness was reduced and by adjusting the annealing temperature the grain size were enlarged. Consequently, the Au thin-film has improved conductivity.

A Study on The Effect of Dampening Conductivity in the Offset Printing Printability (오프셋인쇄 축임물의 전도도가 인쇄적성에 미치는 영향에 관한 연구)

  • Park, Chan-Woo;Lee, Jae-Soo
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.25 no.1
    • /
    • pp.43-52
    • /
    • 2007
  • Offset printing is one of the well known printing technique of lithographic process and consists of image area and 'non-image area on a flat image carrier. The surface tension of dampening water can be controlled by adding IPA after mixing of raw water and etching solution. The etching solution contains a surfactant for reducing surface energy, a clean agent for non-imaging area, wetting agent for protecting non-imaging area from oil components like ink and also an emulsifying agent for controlling emulsification. In this study, the present situation of dampening water maintenance has examined by collecting dampening water using at domestic companies. The pH related to dampening water, conductivity, contact angle, emulsification curve are measured to define the current situation of dampening water control of each companies and to analyze the relationship among measured properties. In the study most of companies among 16 printing companies tested controlling dampening water through pH value. However, the quality of printing has varied depending upon conductivity, contact angle, IPA content, and emulsification value. The control of dampening water should be carry at the state of the standard when adding proper ratio of etching solution. It would be more effective when pH or conductivity control carries out in parallel with controlling dampening water. Therefore the concept that pH5.5 is correct is based concept. Based on these initial tests it is defined that the standardization of dampening water control is required.

  • PDF

Characteristics of Electric Conductivity and Adhesion with Current Collector According to Composition of $LiMn_2O_4$ Cathode (망간산화물 정극의 합제조성에 따른 전자전도특성 및 집전체와의 접착특성)

  • Eom Seung-Wook;Doh Chil-Hoon;Moon Seong-In
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.1
    • /
    • pp.1-5
    • /
    • 2001
  • Composite ratio of $LiMn_2O_4$ in cathode was optimized as function of specific surface area. Binder has to be used as possible as little, and it should maintain adhesive property between cathode composite and current collector even though in electrolytes. For this purpose, We used 'Hot Roll Pressing' method, and it was effective. To prevent separation of cathode composite from current collector, PVDF(Polyvinylidenefluoride) has to be mixed more than $1.1\%$ in weight ratio to sum of surface area of lithium manganese oxide and conducting agents. Specific internal resistance was reduced as by increasing electrical conductivity of cathode. And Ratio of 2C rate discharge capacity to 0.2C rate discharge capacity was increased by $17\%$, as increasing electrical conductivity from 0.019 mS/cm to 0.036 mS/cm.

Measurement of Ground Thermal Conductivity and Characteristics of Thermal Diffusion by the Ground Heat Exchanger (지중열전도도 측정과 지중열교환기의 열확산 특성 분석)

  • Jeong, Young-Man;Koo, Kyung-Min;Hwang, Yu-Jin;Jang, Se-Yong;Lee, Yeong-Ho;Lee, Dong-Hyuk;Lee, Jae-Keun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.11
    • /
    • pp.739-745
    • /
    • 2008
  • This paper presents the measurement of ground thermal conductivity and the characteristics of ground thermal diffusion by a ground heat exchanger(GHE). A borehole is installed to a depth of 175 m with a diameter of 150 mm. To analyze the thermal diffusion property of the GHE, thermocouples are installed under the ground near the GHE. The outdoor temperature, the ground temperature, and the water temperature of the GHE are monitored for evaluating the characteristics of ground thermal diffusion. The ground thermal conductivity is evaluated by the in-situ thermal response tester and the line source model. It is found to be 3.08 W/$m^{\circ}C$ in this study. The ground temperature is greatly dependent on the outdoor temperature from the ground surface to 2.5 m in depth and is stable below 10 m in depth. The surface temperature of the GHE varies as a function of the temperature of circulating water. But the ground temperature at 1.5 m far from the GHE is not changed in accordance with the temperature of circulating water.