• Title/Summary/Keyword: Surface coating layer

Search Result 1,188, Processing Time 0.029 seconds

Effects of Hear Teratment on the Insulation Layer of Non-oriented Silicon Steel Sheets (열처리 조건이 무\ulcorner향성 규소강판의 절연피막에 미치는 영향)

  • 유영종;신정철
    • Journal of Surface Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.109-117
    • /
    • 1989
  • The effect of heft treatment on the characteristic properties of insulation layer is studied for two kinds of non-oriented silicon steels, which were insulation-coates with various kinds of inorganic and inorganic-organic complex coating solutions. In addition, how the carbon contained in the insulation layer would affect the carbon content and the magnetic properties of the steel substrates is examined. Lower temperature heat treftment ($480^{\circ}C$ for 0.5hr) is found to render morw favorable surface qualities, wheras higher temperature heat treatment ($790^{\circ}C$ for 2hr) better core loss due to grin growt occurred during the heat treatment. Decarburization of the steel substrate is also found unaffectrd by the presence of carbon in the insulation layer.

  • PDF

Effect of Hydrophobizing Method on Corrosion Resistance of Magnesium Alloy with Plasma Electrolytic Oxidation (소수성 처리 방법에 따른 플라즈마 전해 산화 처리된 마그네슘 합금의 내식성)

  • Joo, Jaehoon;Kim, Donghyun;Jeong, Chanyoung;Lee, Junghoon
    • Journal of Surface Science and Engineering
    • /
    • v.52 no.2
    • /
    • pp.96-102
    • /
    • 2019
  • Magnesium and its alloys are prone to be corroded, thus surface treatments improving corrosion resistance are always required for practical applications. As a surface treatment of magnesium alloys, plasma electrolytic oxidation (PEO), creating porous stable oxide layer by a high voltage discharge in electrolyte, enhances the corrosion resistance. However, due to superhydrophilicity of the porous oxide layer, which easily allow the penetration of corrosive media toward magnesium alloys substrate, post-treatments inhibiting the transfer of corrosive media in porous oxide layer are required. In this work, we employed a hydrophobizing method to enhance the corrosion resistance of PEO treated Mg alloy. Three types of hydrophobizing techniques were used for PEO layer. Thin Teflon coating with solvent evaporation, self-assembled monolayer (SAM) coating of octadecyltrichlorosilane (OTS) based on solution method and SAM coating of perfluorodecyltrichlorosilane (FDTS) based on vacuum method significantly enhances corrosion resistance of PEO treated Mg alloy with reducing the contact of water on the surface. In particular, the vacuum based FDTS coating on PEO layer shows the most effective hydrophobicity with the highest corrosion resistance.

Tribological behaviors of polymer coated carbon composite with small surface grooves (코팅된 요철표면을 가지는 탄소/에폭시 복합재료의 마찰 및 마모 특성)

  • Kim, Seong-Su;Lee, Hak-Gu;Lee, Dai-Gil
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.107-110
    • /
    • 2005
  • Tribological behaviors of carbon epoxy composites whose surfaces have many small grooves were compared with respect to coating method under dry sliding and water lubricating conditions. The surface coating materials were epoxy (Ep) and polyethylene (PE) mixed with self-lubricating $MoS_2$ and PTFE powders. The wear morphology of the composites observed with a scanning electron microscopic (SEM) revealed that the surface coating layer mixed with the self-lubricating powder on the grooved surface significantly improved the wear resistance under water lubricating condition because the surface coating layer blocked water to penetrate the composite surface and the self-lubricating powder reduced the wear on the coating by suppressing the generation of blisters.

  • PDF

A Comparative Study on Tribological Characteristics between Ni-P Electroless Plating and TiAlN Coating on Anodized Aluminum Alloy (아노다이징된 알루미늄 합금에 대한 TiAlN 코팅, 무전해 Ni-P 도금의 트라이볼로지 특성 비교)

  • Lee, Gyu-Sun;Bae, Sung-Hoon;Lee, Young-Ze
    • Tribology and Lubricants
    • /
    • v.26 no.1
    • /
    • pp.68-72
    • /
    • 2010
  • A ceramic coating is a surface treatment method that is being used widely in the industrial field, recently. Ni-P plating is also being used widely because of its corrosion resistance and low cost. An anodizing method is applicable to aluminum alloy. An anodizing method generates a thick oxide layer on the surface and then, that heightens hardness and protects the surface. These surface treatments are applied to various mechanical components and treated surfaces relatively move one another. In this study, tribological characteristics of Ni-P plating and TiAlN coating on anodized Al alloy are compared. The counterpart, anodized Al alloy, is worn out abrasively by Ni-P plating and TiAlN coating that have higher hardness. Abrasively worn debris accumulated on the surfaces of Ni-P plating and TiAlN coating, and then transferred layer is formed. This transferred layer affects the amplitude of variation of friction coefficient, which is related to noise and vibration. The amplitude of variation of friction coefficient of Ni-P plating is lower than those of TiAlN coating during the tests.

Antistatic Behavior of UV-curable Multilayer Coating Containing Organic and Inorganic Conducting Materials (유·무기 전도성 물질을 함유한 UV 경화형 다층 코팅의 대전방지 특성)

  • Kim, Hwa-Suk;Kim, Hyun-Kyoung;Kim, Yang-Bae;Hong, Jin-Who
    • Journal of Adhesion and Interface
    • /
    • v.3 no.3
    • /
    • pp.22-29
    • /
    • 2002
  • UV curable coating system described here consists of double layers, namely under layer and top laser coatings. The former consists of organic-inorganic conductive materials and the latter consists of multifunctional acrylates. Transparent double layer coatings were prepared on the transparent substrates i.e. PMMA, PC, PET etc. by the wet and wet coating procedure. Their surface resistances and film properties were measured as a function of the top layer thickness and relative humidity. As the thickness of the top layer was less than $10{\mu}m$, the surface resistance in the range of $10^8{\sim}10^{10}{\Omega}/cm^2$ was obtained. The surface properties of the two-layer coating were remarkably improved compared with the single layer coating. The effects of migration of conducting materials on the film properties of multilayer coating were investigated by using contact angle and Fourier transform infrared/attenuated total reflection(FT-IR/ATR). It was found that the migration of dopant(dodecyl benzenesulfonic acid, DBSA) molecules were occurred from film-substrate interface to film-air interface in the organic conductive coating system but not in the inorganic one.

  • PDF

A Study on the Roll Manufacturing Technology Applying Powder Flame Spray Coating Technology of Ni-Based Alloy Powder (Ni계 합금분말 용사 코팅기술을 적용한 롤 제조기술 연구)

  • Park, Ji Woong;Kim, Soon Kook;Ban, Gye Bum
    • Journal of Powder Materials
    • /
    • v.29 no.2
    • /
    • pp.123-131
    • /
    • 2022
  • The purpose of this study is to improve the mechanical properties and develop manufacturing technology through self-soluble alloy powder flame spray coating on the surface of a run-out table roller for hot rolling. The roller surface of the run-out table should maintain high hardness at high temperatures and possess high wear, corrosion, and heat resistances. In addition, sufficient bonding strength between the thermal spray coating layer and base material, which would prevent the peel-off of the coating layer, is also an important factor. In this study, the most suitable powder and process for roll manufacturing technology are determined through the initial selection of commercial alloy powder for roll manufacturing, hardness, component analysis, and bond strength analysis of the powder and thermal spray coating layer according to the powder.

Effect of Coating Time on the Property of TiN-Coated Layer on High Speed Steel by Arc Ion Plating (AIP 코팅법에서 코팅 시간이 고속도강의 TiN 코팅층 성질에 미치는 영향)

  • Kim, B.J.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.308-313
    • /
    • 2006
  • The effect of coating time on surface properties of the TiN-coated high speed steel(SKH51) by arc ion plating is and presented in this paper. Surface roughness, micro-hardness, coated thickness, atomic distribution of TiN and adhesion strength are measured for various coating times. It has been shown that the coating time has a deep influence more than 60 minites on the micro-hardness, coated thickness, atomic distribution of Ti and adhesion strength of the SKH51 steels, but that the coating time has little influence on the surface roughness.

  • PDF

Effect of Gun Nozzle Movement Speed in HVOF Process on the properties of Coating Thickness and Surface (HVOF 용사 건의 이동속도가 WC-Co 코팅층의 두께 형성 및 표면 특성에 미치는 영향)

  • Kim, Kibeom;Kim, Kapbae;Jung, Jongmin;Kim, Kwonhoo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.5
    • /
    • pp.262-269
    • /
    • 2022
  • In order to process materials such as engineering plastics, which are difficult to mold due to their high strength compared to conventional polymer materials, it is necessary to improve the hardness and strength of parts such as screws and barrels of injection equipment in extrusion system. High-velocity oxygen fuel (HVOF) process is well known for its contribution on enhancement of surface properties. Thus in this study, using the HVOF process, WC coating layers of different thicknesses were bonded to the surface of S30C substrate by controlling the movement speed of the spray nozzle and each property was evaluated to decide the optimization condition. Through the results, the thickness of WC coating layer increased from 0 to 200 ㎛ maximum, along with the decrement of nozzle movement speed and the surface hardness get increased. Especially, the coated layer with the thickness over 180 ㎛ under the nozzle speed 500 mm/s had high hardness than thinner layer. In addition, the amount of wear consumed per unit time was also significantly reduced due to the formation of the coating layer.

EFFECT OF COATING COMPOSITION IN DOUBLE COATING ON THE PENETRATION OF FINE PARTICLES INTO SUBSTRATE

  • Kim, Byeong-Soo;Douglas W. Bousfield
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.18 no.1
    • /
    • pp.1-11
    • /
    • 2000
  • The influence of the first coating layer on the properties of the second coating layer is reported. For various model coating composition, ratios of first and second coating weights are used to generate coating layers. The void volume, pore size distribution and light scatter coefficient of the coatings are measured. In some cases, the fine material from the second layer seems to penetrate the first layer to reduce the void fraction of the total system. Rapid setting coating, for example thin layers on porous first layer tends to generate porous coating layers.

  • PDF

Hydrophilic Modification of Polypropylene Hollow Fiber Membrane by Dip Coating, UV Irradiation and Plasma Treatment

  • Kim Hyun-Il;Kim Jin Ho;Kim Sung Soo
    • Korean Membrane Journal
    • /
    • v.7 no.1
    • /
    • pp.19-27
    • /
    • 2005
  • PP hollow fiber membrane was hydrophilized by EVOH dip coating followed by low temperature plasma treatment and UV irradiation. EVOH coating attained high water flux without any prewetting but its stability did not guaranteed at high water permeation rate. At high water permeation rate, water flux declined gradually due to swelling and delamination of the EVOH coating layer causing pore blocking effect. However, plasma treatment reduces the swelling, which suppress delamination of the EVOH coating layer from PP support result in relieving the flux decline. Also, UV irradiation helped the crosslinking of the EVOH coating layer to enhance the performance at low water permeation rate. FT-IR and ESCA analyses reveal that EVOH dip coating performed homogeneously through not only membrane surface but also matrix. Thermogram of EVOH film modified plasma treatment and W irradiation show that crosslinking density of EVOH layer increased. Chemical modification by plasma treatment and UV irradiation stabilized the hydrophilic coating layer to increase the critical flux of the submerged membrane.