• Title/Summary/Keyword: Surface carbon content

Search Result 518, Processing Time 0.023 seconds

Optimum Ratio between Nafion and 20, 40 wt% Pt/C Catalysts for MEAs (20, 40 wt% Pt/C 촉매를 사용한 MEA제조에서 나피온의 최적비)

  • Jung, Ju-Hae;Jung, Dong-Won;Kim, Jun-Bom
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.1
    • /
    • pp.50-55
    • /
    • 2011
  • To enhance the performance of a MEA (membrane electrode assembly) in a polymer electrolyte membrane fuel cell (PEMFC), optimum contents of Nafion ionomer as electrolyte in the 20 and 40 wt% Pt/C used in electrodes were examined. Variety characterization techniques were applied to examine optimum Nafion contents: cell performance test, electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). According to Pt wt% supported on carbon support, it has been observed that polarization, ohmic, and mass transfer resistances were changed so that the cell performance was significantly dependent on the content of Nafion ionomer. Optimum Nafion ionomer contents in the 20 wt% Pt/C and 40 wt% Pt/C were showed 35 wt% and 20 wt%, respectively. This is due to different surface area of the Pt/C catalyst, and formation of triple phase boundary seems to be affected by the Nafion contents.

Continuous Coating Process Development for PEFC Membrane Electrode Assembly (고분자 연료전지용 MEA 연속 코팅공정 개발)

  • Park, Seok-Hee;Yoon, Young-Gi;Kim, Chang-Soo;Lee, Won-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.110-112
    • /
    • 2006
  • Membrane electrode assembly (MEA) for polymer electrolyte fuel cell (PEFC) are commonly prepared in the research laboratory by spraying, screen-printing and brushing catalyst slurry onto membrane or other support material like carbon paper or polyimide film in a batch style. These hand applications of the catalyst slurry are painstaking process with respect to precision of catalyst loading and reproducibility. It has been generally mentioned that the adoption of continuous process is very helpful to develop the reliable product. In the present work, we report the results of using continuous type coater with doctor-blade to coat catalyst slurry for preparing the MEA catalyst layers In a faster and highly reproducible fashion. We show that while expectedly faster than batch style, the machine coater requires the use of slurry of appropriate composition and a properly selected transfer decal material in order to achieve superior MEA plat lnw loading reproducibility. To make highly viscous catalyst slurry that is imperative for using coater, we use 40wt.% Nafion solution and minimize the content of organic solvent. And the choice of proper high surface area catalyst is important in the viewpoint of making well-dispersed slurry. After catalyst coating onto the support material, we transferred the catalyst layer to both sides of Nafion membrane by hot-pressing In this case, the degree of transfer was Influenced by hot-pressing condition including temperature, pressure, and time. To compare the transferring ability, we compared so many films and detaching papers. And among the support, polyethylene terephthalate(PET) film shows the prominent result.

  • PDF

Community Structure of Plankton in Eutrophic Water Systems with Different Residence Time (체류시간이 서로 다른 부영양 수계에서 플랑크톤군집의 생태학적 특성)

  • Lee, Uk-Se;Han, Myeong-Su
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.3 s.108
    • /
    • pp.263-271
    • /
    • 2004
  • To collect the basic ecological information about the microbial food webs in eutrophic water system with different residence time, the monthly variation of bacterioplankon (bacteria and small-sized cyanobacteria) and nanoplankton (phytoplankton and protists) were examined from December 2000 to September 2001. Kyungan stream is shorter in resident time (ca.5.4 d) than Seokchon reservoir (ca.72 d), even though they showed the same pattern in precipitation. With the basic environments, we examined the biomass (standing crops and its carbon content) of each plankton collected from the surface water. Large-sized planktons flourished in the time of low temperature, while small planktons were in the time of the high temperature period. Especially, in the Kyungan stream with much disturbance by rainfall and outflow, high diversity showed in term of species and cell morphology, compared to that of Seokchon lake. The time-lag relationship remarkably showed between phytoplankton and bacteria in Seokchon reservoir, and between protists and bacteria in Kyungan stream, respectively.

Complete genome sequence of Betaproteobacteria strain GR16-43 isolated form a freshwater pond in South Korea (담수에서 분리한 Betaproteobacteria GR16-43의 유전체 염기서열 분석)

  • Choi, Ahyoung;Baek, Kiwoon;Chung, Eu Jin;Kim, Jee-Hwan;Choi, Gang-Guk
    • Korean Journal of Microbiology
    • /
    • v.53 no.4
    • /
    • pp.320-322
    • /
    • 2017
  • A betaproteobacterium strain GR16-43 was isolated from a surface layer of the Geomnyong Pond in Republic of Korea by a dilution-to-extinction culturing method. We report the whole genome sequence of the strain GR16-43, which contains 4,806,848 bp with a G + C content 67.12%, and to include 4,424 protein-coding genes and 47 transfer RNA genes. The genome was determined to contain the genes encoding carbon monoxide dehydrogenase, nitrate reductase, nitrite reductase, nitric oxide reductase, and the sulfur oxidation (sox) gene cluster, highlighting the potential importance of the bacterial group represented by the strain in the cycling of inorganic elements. These results indicate that strain GR16-43 genome showed several traits indicating adaptation of the bacteria to living in freshwater environments.

Initial Ignition Time and Calorific Value Enhancement of Briquette with Added Pine Resin

  • Gustan PARI;Lisna EFIYANTI;Saptadi DARMAWAN;Nur Adi SAPUTRA;Djeni HENDRA;Joseph ADAM;Alfred INKRIWANG;Rachman EFFENDI
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.3
    • /
    • pp.207-221
    • /
    • 2023
  • The increasing demand for clean energy requires considerable effort to find alternative energy sources, such as briquettes. This research aims to develop a charcoal briquette with added pine resin (API) that has excellent combustion speed and distinctive aroma. Briquettes are composed of charcoal, pine resin (concentration: 0%-30%), and starch (up to 7%). They are produced in several stages, including coconut shell pyrolysis in conventional combustion, to obtain charcoal for the briquette precursor. Briquette compaction is conducted by mixing and densifying the charcoal, pine resin, and starch using a hydraulic press for 3 min. The hydraulic press has a total surface area and diameter of 57.7 cm2 and 3.5 cm, respectively. The briquettes are dried at different temperatures, reaching 70℃ for 24 h. The study results show that the briquettes have a thickness and diameter of up to 2 and 3.5 cm, respectively; moisture of 2.18%-2.62%; ash of 11.61%-13.98%; volatile matter of 27.15%-51.74%; and fixed carbon content of 40.24%-59.46%. The compressive strength of the briquettes is 186-540 kg/cm2. Their calorific value is 5,338-6,120 kcal/kg, combusting at a high speed of 0.15-0.40 s. The methoxy naphthalene, phenol, benzopyrrole, and lauryl alcohol; ocimene, valencene, and cembrene are found in the API. The API briquette has several chemical compounds, such as musk ambrette, ocimene, sabinene, limonene, 1-(p-cumenyl) adamantane, butane, and propanal, which improve aroma, drug application, and fuel production. Accordingly, API briquettes have considerable potential as an alternative energy source and a health improvement product.

Estimation of Soil Cooling Load in the Root Zone of Greenhouses (온실내 근권부의 지중냉각부하 추정)

  • 남상운
    • Journal of Bio-Environment Control
    • /
    • v.11 no.4
    • /
    • pp.151-156
    • /
    • 2002
  • Root zone cooling, such as soil or nutrient solution cooling, is less expensive than air cooling in the whole greenhouse and is effective in promoting root activity, improving water absorption rate, decreasing plant temperature, and reducing high temperature stress. The heat transfer of a soil cooling system in a plastic greenhouse was analyzed to estimate cooling loads. The thermal conductivity of soil, calculated by measured heat fluxes in the soil, showed the positive correlation with the soil water content. It ranged from 0.83 to 0.96 W.m$^{[-10]}$ .$^{\circ}C$$^{[-10]}$ at 19 to 36% of soil water contents. As the indoor solar radiation increased, the temperature difference between soil surface and indoor air linearly increased. At 300 to 800 W.m$^{-2}$ of indoor solar radiations, the soil surface temperature rose from 3.5 to 7.$0^{\circ}C$ in bare ground and 1.0 to 2.5$^{\circ}C$ under the canopy. Cooling loads in the root zone soil were estimated with solar radiation, soil water content, and temperature difference between air and soil. At 300 to 600 W.m$^{-2}$ of indoor solar radiations and 20 to 40% of soil water contents,46 to 59 W.m$^{-2}$ of soil cooling loads are required to maintain the temperature difference of 1$0^{\circ}C$ between indoor air and root zone soil.

INTERGRANULAR CORROSION-RESISTANT STAINLESS STEEL BY GRAIN BOUNDARY ENGINEERING

  • Hiroyuki Kokawa;Masayuki Shimada;Wang, Zhan-Jie;Yutaka S. Sato
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.250-254
    • /
    • 2002
  • Intergranular corrosion of austenitic stainless steels is a conventional and momentous problem during welding and high temperature use. One of the major reasons for such intergranular corrosion is so-called sensitization, i.e., chromium depletion due to chromium carbide precipitation at grain boundaries. Conventional methods for preventing sensitization of austenitic stainless steels include reduction of carbon content in the material, stabilization of carbon atoms as non-chromium carbides by the addition of titanium, niobium or zirconium, local solution-heat-treatment by laser beam, etc. These methods, however, are not without drawbacks. Recent grain boundary structure studies have demonstrated that grain boundary phenomena strongly depend on the crystallographic nature and atomic structure of the grain boundary, and that grain boundaries with coincidence site lattices are immune to intergranular corrosion. The concept of "grain boundary design and control", which involves a desirable grain boundary character distribution, has been developed as grain boundary engineering. The feasibility of grain boundary engineering has been demonstrated mainly by thermomechanical treatments. In the present study, a thermomechanical treatment was tried to improve the resistance to the sensitization by grain boundary engineering. A type 304 austenitic stainless steel was pre-strained and heat-treated, and then sensitized, varying the parameters (pre-strain, temperature, time, etc.) during the thermomechanical treatment. The grain boundary character distribution was examined by orientation imaging microscopy. The intergranular corrosion resistance was evaluated by electrochemical potentiokinetic reactivation and ferric sulfate-sulfuric acid tests. The sensitivity to intergranular corrosion was reduced by the thermomechanical treatment and indicated a minimum at a small roll-reduction. The frequency of coincidence-site-lattice boundaries indicated a maximum at a small strain. The ferric sulfate-sulfuric acid test showed much smaller corrosion rate in the thermomechanically-treated specimen than in the base material. An excellent intergranular corrosion resistance was obtained by a small strain annealing at a relatively low temperature for long time. The optimum parameters created a uniform distribution of a high frequency of coincidence site lattice boundaries in the specimen where corrosive random boundaries were isolated. The results suggest that the thermomechanical treatment can introduce low energy segments in the grain boundary network by annealing twins and can arrest the percolation of intergranular corrosion from the surface.

  • PDF

Geochemistry and Isotope Studies of the Shinchon $CO_2$ -rich Waters in the Gyeongsang Province (경상지역 신촌 탄산약수의 지화학적 및 동위원소 특성)

  • 김건영;고용권;배대석;김천수;박맹언
    • Economic and Environmental Geology
    • /
    • v.34 no.1
    • /
    • pp.71-88
    • /
    • 2001
  • The Geochemica] and isotope studies on the $CO_2$-rich water from the Shinchon area were carried out. The Shinchon $CO_2$-rich water belongs to Ca(Na)-$HCO_3$ type showing very high $P_{CO_{2}}$ ( $10^{-0.35}$ ~ $10^{0.29}$ atm) and TDS (835-3,144 mg/L). The results of geochemical and isotope analysis indicate that $CO_2$ gas is originated from the deep seated source such as mantle or magmatic gases. The $CO_2$-rich water was evolved by interaction with deep-seated granite and major water-rock interaction was dissolution of p]agioclase resulting high Na content of $CO_2$-rich water. Precipitation and dissolution of secondary calcite might be accompanied with the dissolution of plagioclase maintaining Na/Ca ratio. High contents of K and $SO_4$ indicate that the geochemical characteristics of $CO_2$-rich water were partially affected by interaction with upper sedimentary rock during uprising to surface. N03 and tritium contents suggest that the $CO_2$-rich water was mixed with low $CO_2$ groundwater at some locations. The oxygen-hydrogen isotopes show that all water samples were derived from meteoric waters and the $CO_2$-rich water was isotopically re-equilibrated with lighter $CO_2$ gas. Although some carbon isotope data show isotopically heavy values, carbon isotope data indicate that the $CO_2$ gas was possib]y derived by deep source.

  • PDF

Analysis of cause of engine failure during power generation using biogas in sewage treatment plant (하수처리장 바이오가스를 이용한 발전시 가스엔진의 고장원인 분석)

  • Kim, Gill Jung;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.13-29
    • /
    • 2016
  • In this study, we analyzed the causes of major faults in the biogas plant through the case of gas engine failure when cogenerating electricity and heat using biogas as a fuel in the actual sewage treatment plant and suggested countermeasures. Hydrogen sulfide in the biogas entering the biogas engine and water caused by intermittent malfunction of the water removal system caused intercooler corrosion in the biogas engine. In addition, the siloxane in the biogas forms a silicate compound with silicon dioxide, which causes scratches and wear of the piston surface and the inner wall of the cylinder liner. The substances attached to the combustion chamber and the exhaust system were analyzed to be combined with hydrogen sulfide and other impurities. It is believed that hydrogen sulfide was supplied to the desulfurization plant for a long period of time because of the high content of hydrogen sulfide (more than 50ppm) in the biogas and the hydrogen sulfide was introduced into the engine due to the decrease of the removal efficiency due to the breakthrough point of the activated carbon in the desulfurization plant. In addition, the hydrogen sulfide degrades the function of the activated carbon for siloxane removal of the adsorption column, which is considered to be caused by the introduction of unremoved siloxane waste into the engine, resulting in various types of engine failure. Therefore, hydrogen sulfide, siloxane, and water can be regarded as the main causes of the failure of the biogas engine. Among them, hydrogen sulfide reacts with other materials causing failure and can be regarded as a substance having a great influence on the pretreatment process. As a result, optimization of $H_2S$ removal method seems to be an essential measure for stable operation of the biogas engine.

Effect of Deposition Temperature on the Characteristics of Low Dielectric Fluorinated Amorphous Carbon Thin Films (증착온도가 저유전 a-C:F 박막의 특성에 미치는 영향)

  • Park, Jeong-Won;Yang, Sung-Hoon;Park, Jong-Wan
    • Korean Journal of Materials Research
    • /
    • v.9 no.12
    • /
    • pp.1211-1215
    • /
    • 1999
  • Fluorinated amorphous carbon (a-C:F) films were prepared by an electron cyclotron resonance chemical vapor deposition (ECRCVD) system using a gas mixture of $C_2F_6$ and $CH_4$ over a range of deposition temperature (room temperature ~ 300$^{\circ}C$). 500$^{\AA}C$ thick DLC films were pre-deposited on Si substrate to improve the strength between substrate and a-C:F film. The chemical bonding structure, chemical composition, surface roughness and dielectric constant of a-C:F films deposited by varying the deposition temperature were studied with a variety of techniques, such as Fourier transform infrared spectroscopy(FTIR), X-ray photoelectron spectroscopy(XPS), atomic force microscopy (AFM) and capacitance-voltage(C-V) measurement. Both deposition rate and fluorine content decreased linearly with increasing deposition temperature. As the deposition temperature increased from room temperature to 300$^{\circ}C$, the fluorine concentration decreased from 53.9at.% down to 41.0at.%. The dielectric constant increased from 2.45 to 2.71 with increasing the deposition temperature from room temperature to 300$^{\circ}C$. The film shrinkage was reduced with increasing deposition temperature. This results ascribed by the increased crosslinking in the films at the higher deposition temperature.

  • PDF