DOI QR코드

DOI QR Code

Optimum Ratio between Nafion and 20, 40 wt% Pt/C Catalysts for MEAs

20, 40 wt% Pt/C 촉매를 사용한 MEA제조에서 나피온의 최적비

  • Jung, Ju-Hae (School of Chemical Engineering & Bioengineering, University of Ulsan) ;
  • Jung, Dong-Won (School of Chemical Engineering & Bioengineering, University of Ulsan) ;
  • Kim, Jun-Bom (School of Chemical Engineering & Bioengineering, University of Ulsan)
  • 정주해 (울산대학교 생명화학공학부) ;
  • 정동원 (울산대학교 생명화학공학부) ;
  • 김준범 (울산대학교 생명화학공학부)
  • Received : 2011.01.07
  • Accepted : 2011.02.25
  • Published : 2011.02.28

Abstract

To enhance the performance of a MEA (membrane electrode assembly) in a polymer electrolyte membrane fuel cell (PEMFC), optimum contents of Nafion ionomer as electrolyte in the 20 and 40 wt% Pt/C used in electrodes were examined. Variety characterization techniques were applied to examine optimum Nafion contents: cell performance test, electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). According to Pt wt% supported on carbon support, it has been observed that polarization, ohmic, and mass transfer resistances were changed so that the cell performance was significantly dependent on the content of Nafion ionomer. Optimum Nafion ionomer contents in the 20 wt% Pt/C and 40 wt% Pt/C were showed 35 wt% and 20 wt%, respectively. This is due to different surface area of the Pt/C catalyst, and formation of triple phase boundary seems to be affected by the Nafion contents.

Pt/C 촉매 (20, 40 wt% Pt/C)를 사용하여 고분자 전해질 연료전지의 MEA를 제조하고 각각의 촉매에서 최적의 나피온 이오노머 함량을 알아보았다. 나피온 함량에 따른 MEA의 전기화학적인 성능변화는 단위전지 성능평가, electrochemical impedance spectroscopy (EIS), cyclic voltammetry(CV)을 통해서 분석하였다. 나피온의 함량에 따라 전지의 활성화 분극, 옴 저항, 물질전달 저항 등의 변화가 나타났다. 이는 전극의 촉매층 내에서 발생되는 전기/이온 전도도 사이의 'trade-off'와 물질전달(물 배출과 반응가스 확산)에 의한 것이며, 대부분 활성화 분극과 물질전달 저항의 변화로 나타났다. 20 wt% Pt/C와 40 wt% Pt/C 촉매에서 최적의 나피온 함량은 각각 35 wt%와 20 wt%로 나타났다. 이는 Pt 중량비에 따른 Pt 입자간의 거리 및 촉매의 비표면적의 차이 때문에 나타난 결과이며 서로 다른 나피온 함량에서 최적의 삼상계면이 형성되는 것으로 판단된다.

Keywords

References

  1. D. Y. Lee and S. W. Hwang, “Effect of loading and distributions of Nafion ionomer in the catalyst layer for PEMFCs”, Int. J. Hydrogen Energy, 33, 2790 (2008). https://doi.org/10.1016/j.ijhydene.2008.03.046
  2. C. M. Lai, J. C. Lin, F. P. Ting, S. D. Chyou, and K. L. Hsueh, “Contribution of Nafion loading to the activity of catalysts and the performance of PEMFC”, Int. J. Hydrogen Energy, 33, 4132 (2008). https://doi.org/10.1016/j.ijhydene.2008.05.074
  3. R. R. Passos, V. A. Paganin, and E. A. Ticianelli, “Studies of the performance of PEM fuel cell cathodes with the catalyst layer directly applied on Nafion membranes”, Electrochim. Acta, 51, 5239 (2006). https://doi.org/10.1016/j.electacta.2006.01.044
  4. G. Sasikumar, J. W. Ihm, and H. Ryu, “Optimum Nafion content in PEM fuel cell electrode”, Electrochim. Acta, 50, 601 (2004). https://doi.org/10.1016/j.electacta.2004.01.126
  5. E. Passalacqua, F. Lufrano, G. Squadrito, A. Patti, and L. Giorgi, “Nafion content in the catalyst layer of polymer electrolyte fuel cells: effects on structure and performance”, Electrochim. Acta, 46, 799 (2001). https://doi.org/10.1016/S0013-4686(00)00679-4
  6. J. Zhang, “PEM fuel cell electrocatalysts and catalyst layers”, p.894-895, Springer (2008).
  7. J. Zhang, “PEM fuel cell electrocatalysts and catalyst layers”, p.895, Springer (2008).
  8. W. Vielstich, A. Lamm, and H. A. Gasteiger, “Handbook of fuel cells”, vol.3, p.550, John wiley & Sons Ltd. (2003).
  9. G. Sasikumar, J. W. Ihm, and H. Ryu, “Dependence of optimum Nafion content in catalyst layer on platinum loading”, J. Power Sources, 132, 11 (2004). https://doi.org/10.1016/j.jpowsour.2003.12.060
  10. Z. Qia and A. Kaufman, “Low Pt loading high performance cathodes for PEM fuel cells”, J. Power Sources, 113, 37 (2003). https://doi.org/10.1016/S0378-7753(02)00477-9
  11. S. Gamburzev and A. Appleby, “Recent progress in performance improvement of the proton exchange membrane fuel cell (PEMFC)”, J. Power Sources, 107, 5 (2002). https://doi.org/10.1016/S0378-7753(01)00970-3
  12. E. Antolini, L. Giorgi, A. Pozio, and E. Passalacqua, “Influence of Nafion loading in the catalyst layer of gasdiffusion electrodes for PEFC”, J. Power Sources, 77, 136 (1999). https://doi.org/10.1016/S0378-7753(98)00186-4
  13. C. S. Kong, D. Y. Kim, H. K. Lee, Y. G. Shul, and T. H. Lee “Influence of pore-size distribution of diffusion layer on mass-transprt problems of proton exchange membrane fuel cells”, J. Power Sources, 108, 185 (2002). https://doi.org/10.1016/S0378-7753(02)00028-9
  14. S. Mu, C. Xu, Y. Gao, H. Tang, and M. Pan, “Accelerated durability tests of catalyst layers with various pore volume for catalyst coated membranes applied in PEM fuel cells”, Int. J. Hydrogen Energy, 35, 2872 (2008).
  15. D. W. Jung, S. Park, J. T. Kang, and J. B. Kim, “Synthesis of carbon nanotubes supported PtCo electrocatalysts and its characterization for the cathode electrode of PEMFC”, Kor. J. Mater. Res., 9, 233 (2009). https://doi.org/10.3740/MRSK.2009.19.5.233

Cited by

  1. Hybrid electrode effects on polymer electrolyte membrane fuel cells vol.39, pp.2, 2014, https://doi.org/10.1016/j.ijhydene.2013.10.142
  2. Effects of ionomer content on Pt catalyst/ordered mesoporous carbon support in polymer electrolyte membrane fuel cells vol.222, 2013, https://doi.org/10.1016/j.jpowsour.2012.09.012