• Title/Summary/Keyword: Surface area

Search Result 11,330, Processing Time 0.042 seconds

Comparison of Surface Temperatures between Thermal Infrared Image and Landsat 8 Satellite (열적외 영상과 Landsat 8 위성으로부터 관측된 지표면 온도 비교)

  • Cho, Chaeyoon;Jee, Joon-Bum;Park, Moon-Soo;Park, Sung-Hwa;Choi, Young-Jean
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.1
    • /
    • pp.46-56
    • /
    • 2016
  • In order to analyze the surface temperature in accordance with the surface material, surface temperatures between Thermal InfraRed Image (TIRI) and Landsat 8 satellite observed at the commercial area (Gwanghwamun) and residential area (Jungnang) are compared. The surface temperature from TIRI had applied atmospheric correction and compared with that from Landsat 8. The surface temperatures from Landsat 8 at Gwanghwamun and Jungnang are underestimated in comparison with that from TIRI. The difference of surface temperature between the two methods is greater in summer than in winter. When the analysis area was divided into detailed regions, depending on the material and the position of the surface, correlation of surface temperature between TIRI with Landsat 8 is as low as 0.29 (Gwanghwamun) and 0.18 (Jungnang), respectively. The results were caused from the resolution difference between the two methods. While the surface temperatures of each zone from Landsat 8 were observed almost constant, high-resolution TIRI observed relatively precise surface temperatures. When the each area was averaged as one space, correlation of surface temperature between TIRIs and Landsat 8 is more than 0.95. The spatially averaged surface temperature is higher at Jungnang, representing residential areas, than at Gwanghwamun, representing commercial areas. As a result, the observation of high resolution is required in order to observe the precise surface temperature. This is because it appears that the spatial distribution of the various surface temperature in the range of micro-scale according to the conditions of the ground surface.

The Correlation Between Changes of Ankle Joint Position Sense and Sway Area Through Unstable Surface Training (불안정지지면 훈련을 통한 발목관절위치감각 변화와 동요면적 변화간의 상관관계)

  • Ha, Na-Ra;Kim, Myung-Chul;Han, Seul-Ki
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.9
    • /
    • pp.1383-1389
    • /
    • 2013
  • This research was conducted to see the correlation between changes of ankle Joint Position Sense and Sway Area through Unstable Surface training. For the study, 48 healthy males and females were randomly divided into an unstable surface group(n=24) and a stable surface group(n=24). Then, they were asked to carry out the same exercise program three times a week for six weeks. The unstable surface group and stable surface group performed the exercise program on the balance exercise pad and on the hard ground, respectively. As a result, the unstable surface group displayed significantly reduced error of ankle joint position sense and sway area(p<.05). Moreover, a significant correlation between variances of ankle joint position sense and sway area was only found in the unstable surface group. In conclusion, this study demonstrated that there was a significant correlation between changes of ankle joint position sense and sway area through proprioceptive sense training on the unstable surface.

A study on the performance of sixth-grade elementary school students about the perimeter and area of plane figure and the surface area and volume of solid figure (평면도형의 둘레와 넓이, 입체도형의 겉넓이와 부피에 대한 초등학교 6학년 학생들의 수행 능력 조사)

  • Yim, Youngbin;Yim, Ye-eun;Km, Soo Mi
    • The Mathematical Education
    • /
    • v.58 no.2
    • /
    • pp.283-298
    • /
    • 2019
  • Among the measurement attributes included in the elementary school mathematics curriculum, perimeter, area, volume and surface area are intensively covered in fifth and sixth graders. However, not much is known about the level of student performance and difficulties in this area. The purpose of this study is to examine the understanding and performance of sixth-grade elementary school students on some ideas of measurement and ultimately to give some suggestions for teaching measurement and the development of mathematics textbooks. For this, diagnosis questions were developed in relation to the following parts: measurement of perimeter and area of plane figure, measurement of surface area and volume of solid figure, and the relationships between perimeter and area, and the relationships between surface area and volume. The performances of 95 sixth graders were analyzed for this study. The results showed children's low performance in the measurement area, especially measurement of perimeter and surface area, and relationship of the measurement concepts. Finally, we proposed the introduction order of the measurement concepts and what should be put more emphasis on teaching measurement. Specifically, it suggested that we consider placing a less demanding concept first, such as the area and volume, and dealing more heavily with burdensome tasks such as the perimeter and surface area.

Analyzing Impact of the Effect of Greenbelts on the Land Surface Temperature in Seoul Metropolitan Area (수도권 그린벨트가 지표면 온도에 미치는 영향 분석)

  • Kim, Hee-Jae
    • Journal of Urban Science
    • /
    • v.9 no.1
    • /
    • pp.17-31
    • /
    • 2020
  • This study aims to analyze the relations among greenbelt, urban land surface temperature empirically in order to assess the environmental effects of the greenbelt in the Seoul metropolitan area, objectively. For this purpose, this study conducts an empirical analysis of impacts of greenbelt on urban land surface temperature using a multiple-regression model. The main data employed in the analysis include real-time air pollution data, Landsat 8-OLI Landsat imagery data, KLIS data and Jip-gye-gu data. The major findings are summarized as follows. NDVI has a negative (-) correlation with the land surface temperature, and the urban temperature is high in areas with poor vegetation. The land surface temperature is low in residential or commercial areas, while the temperature is high in industrial areas. The temperature is low in green fields, open spaces, and river areas. it is found that the urban land surface temperature is low in the greenbelt zone. In the greenbelt zone, there is an effect that reduces the land surface temperature by 1% on average, as compared to that at the center of the Seoul metropolitan area. Especially, the center of the Seoul metropolitan area, in a range from 0.6% to 1.9% of the average temperature, the temperature gets lower up to approximately 3km from the greenbelt boundary.

Effect of Electrolyte Type on Shape and Surface Area Characteristics of Dendritic Cu Powder (도금전해액의 종류에 따른 수지상 구리 분말의 형상 및 표면적 특성)

  • Park, Da Jung;Park, Chae-Min;Kang, Nam Hyun;Lee, Kyu Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.5
    • /
    • pp.416-422
    • /
    • 2016
  • We have investigated the effects of applied potential, deposition time and electrolyte types on shapes and physical properties of Cu dendrites by potentiostatic electrodeposition. Finer shape of dendrites was observed at less cathodic potential by 100mV than at the limiting current, due to 'effective overpotential'. The shape of copper dendrite is related to the deposition time, too. The dendrite depositing for 10 min showed the finest shape. The finer dendrite has the less apparent density and the larger specific surface area. Dendrite from chloride solution has the lowest density and the largest surface area among three plating solutions, sulfate, chloride and pyrophosphate.

Surface and Adsorption Properties of Activated Carbon Fabric Prepared from Cellulosic Polymer: Mixed Activation Method

  • Bhati, Surendra;Mahur, J.S.;Dixit, Savita;Choubey, O.N.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.569-573
    • /
    • 2013
  • In this study, activated carbon fabric was prepared from a cellulose-based polymer (viscose rayon) via a combination of physical and chemical activation (mixed activation) processes by means of $CO_2$ as a gasifying agent and surface and adsorption properties were evaluated. Experiments were performed to investigate the consequence of activation temperature (750, 800, 850 and $925^{\circ}C$), activation time (15, 30, 45 and 60 minutes) and $CO_2$ flow rate (100, 200, 300 and 400 mL/min) on the surface and adsorption properties of ACF. The nitrogen adsorption isotherm at 77 K was measured and used for the determination of surface area, total pore volume, micropore volume, mesopore volume and pore size distribution using BET, t-plot, DR, BJH and DFT methods, respectively. It was observed that BET surface area and TPV increase with rising activation temperature and time due to the formation of new pores and the alteration of micropores into mesopores. It was also found that activation temperature dominantly affects the surface properties of ACF. The adsorption of iodine and $CCl_4$ onto ACF was investigated and both were found to correlate with surface area.

Effect of the Number of Passes through Grinder on the Pore Characteristics of Nanofibrillated Cellulose Mat (그라인딩 처리 횟수에 따른 나노피브릴화 셀룰로오스 매트의 공극 특성)

  • Sim, Kyujeong;Ryu, Jaeho;Youn, Hye Jung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.1
    • /
    • pp.35-41
    • /
    • 2013
  • In this study, we investigated the effect of the number of passes through agrinder on the pore characteristics of nanofibrillated cellulose (NFC) mat. The beaten pulp suspension was used to make NFC suspension using a grinder. To evaluate the pore characteristics of a NFC mat, the surface morphology of the dried NFC mat was observed with FE-SEM and the specific surface area was analyzed with BET nitrogen gas adsorption. The structure of NFC mat was changed with the different number of passes and drying methods. The specific surface area of NFC mat increased with the increase in the number of passes. The 20-passed NFC mat had 20 times larger specific surface area ($141m^2/g$) compared to the 0-passed NFC mat. The specific surface area was strongly correlated with the average pore size in NFC mat. The average pore diameter in NFC mat was calculated from the gas sorption isotherms using BJH model. The value was 13 - 15 nm, indicating that the NFC mat had mesoporous structure.

Effect of Single or Fractionated X-Irradiation on the Pulmonary Surfactant in Rabbits (단회(單回) 및 분획(分劃) X선(線) 흉부(胸部) 조사(照射)가 가토(家兎) 폐포(肺胞) 표면활성(表面活性) 물질(物質)에 미치는 영향(影響))

  • Kim, Jun;Choo, Young-Eun
    • The Korean Journal of Physiology
    • /
    • v.4 no.2
    • /
    • pp.53-60
    • /
    • 1970
  • In an attempt to clarity the effect of X-irradiation on the activity of surfactant in rabbits, and also to observe the possible difference when the irradiation was made in single or fractionated dose, X-ray in dose of 900 r was irradiated to rabbits either in single or fractionated dose of 300 r each day for three day, Tension-area diagram of lung extract was recorded automatically by a modified Langmuir-Wilhelmy balance with a synchronized recording system designed in this department. The surface tension of lung extract was measured at 1,3,5,24, and 48 hours post-irradiation, and the results were compared with the non-irradiated normal group. The result obtained are summerized as follows: 1) The maximal surface tension, minimal surface tension, width of the tension-area diagram at the surface area of 40% in lung extract, and stability index of the normal rabbit lung extracts were 40.73 dynes/cm, 8.96 dynes/cm. 20.71 dynes/cm, and 1.28 respectively. 2) Activity of surfactant was significantly depressed by X-irradiation, and the pattern of depression was more prominent in the single irradiation group than in the fractionated group. 3) It was found that the changes of the width of the tension-area diagram at the surface area of 40% in lung extract and stability indices corresponded well with that of the maximal or minimal surface tension.

  • PDF

Synthesis of Mesoporous Titanium Dioxide Nanoparticles and Their Application into Dye Sensitized Solar Cells (다공성 산화타이타늄 나노입자 합성과 염료감응형 태양전지 응용)

  • Kim, Whidong;Ahn, Jiyoung;Kim, Soohyung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.64.2-64.2
    • /
    • 2010
  • In order to improve the overall power conversion efficiency in dye-sensitized solar cells (DSSCs), it is very important to secure the sufficient surface area of photocatalytic nanoparticles layer for absorbing dye molecules. It is because increasing the amount of dye absorbed generally results in increasing the amount of light harvesting. In this work, we proposed a new method for increasing the specific surface area of photocatalytic titanium oxide ($TiO_2$) nanoparticles by using an inorganic templating method. Salt-$TiO_2$ composite nanoparticles were synthesized in this approach by spray pyrolyzing both the titanium butoxide and sodium chloride solution. After aqueous removal of salt from salt-$TiO_2$ composite nanoparticles, mesoporous $TiO_2$ nanoparticles with pore size of 2~50 nm were formed and then the specific surface area of resulting porous $TiO_2$ nanoparticle was measured by Brunauer-Emmett-Teller (BET) method. Generally, commercially available P-25 with the average primary size of ~25 nm $TiO_2$ nanoparticles was used as an active layer for dye-sensitized solarcells, and the specific surface area of P-25 was found to be ~50 $m^2/g$. On the other hand, the specific surface area of mesoporous $TiO_2$ nanoparticles prepared in this approach was found to be ~286 $m^2/g$, which is 5 times higher than that of P-25. The increased specific surface area of $TiO_2$ nanoparticles will absorb relatively more dye molecules, which can increase the short curcuit current (Jsc) in DSSCs. The influence of nanoporous structures of $TiO_2$ on the performance of DSSCs will be discussed in terms of the amount of dye molecules absorbed, the fill factor, the short circuit current, and the power conversion efficiency.

  • PDF