Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.2.569

Surface and Adsorption Properties of Activated Carbon Fabric Prepared from Cellulosic Polymer: Mixed Activation Method  

Bhati, Surendra (Department of Chemistry, Govt. Narmada P.G. College, Barkatullah University)
Mahur, J.S. (Department of Chemistry, Govt. Narmada P.G. College, Barkatullah University)
Dixit, Savita (Department of Applied Chemistry, Maulana Azad National Institute of Technology)
Choubey, O.N. (Department of Chemistry, Govt. Narmada P.G. College, Barkatullah University)
Publication Information
Abstract
In this study, activated carbon fabric was prepared from a cellulose-based polymer (viscose rayon) via a combination of physical and chemical activation (mixed activation) processes by means of $CO_2$ as a gasifying agent and surface and adsorption properties were evaluated. Experiments were performed to investigate the consequence of activation temperature (750, 800, 850 and $925^{\circ}C$), activation time (15, 30, 45 and 60 minutes) and $CO_2$ flow rate (100, 200, 300 and 400 mL/min) on the surface and adsorption properties of ACF. The nitrogen adsorption isotherm at 77 K was measured and used for the determination of surface area, total pore volume, micropore volume, mesopore volume and pore size distribution using BET, t-plot, DR, BJH and DFT methods, respectively. It was observed that BET surface area and TPV increase with rising activation temperature and time due to the formation of new pores and the alteration of micropores into mesopores. It was also found that activation temperature dominantly affects the surface properties of ACF. The adsorption of iodine and $CCl_4$ onto ACF was investigated and both were found to correlate with surface area.
Keywords
Activated carbon fabric; BET surface area; Microporosity; Pore size distribution;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Arons, G. N.; Macnair, R. N. Textile Research Journal 1975, 45(1), 91.   DOI
2 Daguerrea, E.; Stoeckli, G. Carbon 2001, 39, 1279.   DOI   ScienceOn
3 Yulia, V.; Basova, V.; Edie, D. D.; Lee, Y.; Laura, K.; Ryu, S. K. Carbon 2004, 42, 485.   DOI   ScienceOn
4 Rodryguez-Reinoso, F.; Pastor, A. C.; Marsh, H.; Martýnez, M. A. Carbon 2000, 38, 379.   DOI   ScienceOn
5 Rosas, J. M.; Bedia, J.; Rodriguez-Mirasol, J.; Cordero, T. Fuel 2009, 88, 19.   DOI   ScienceOn
6 Valente, J. M. et al. J. Porous Mat. 2007, 14, 181. DOI 10.1007/s10934-006-9023-0.   DOI
7 Vicente, J.; Paula, S.; Luis jose, V.; Romero, A. Materials Chemistry and Physics 2010, 124(1), 223.   DOI   ScienceOn
8 Young, C. B.; Wang, K. et al. Korean Chemical Engineering Research 2005, 43, 146.
9 Gergova, K.; Galushko, A.; Petrov & Minkova, N. Carbon 1992, 30(5), 721.   DOI   ScienceOn
10 Rosas, J. M.; Bedia, J.; Rodriguez-Mirasol, J.; Cordero, T. Fuel 2009, 88, 19.   DOI   ScienceOn
11 Eduardo, M.; Correa, C.; Angeles, M.; Angel, L. Microporous and Mesoporous Materials 2008, 111, 523.   DOI   ScienceOn
12 Su, C.-I.; Wang, C.-L. Fibers and Polymers 2007, 8(5), 477.   DOI   ScienceOn
13 Kyotoni, T. Control of Pore Structure of Carbon; Carbon 2000, 38, 269.
14 Debasish, D.; Vivekanand, G.; Nishith, V. Carbon 2004, 42, 6409.
15 Vivekanand, G.; Ashutosh, S.; Nishith, V. Chemical Engineering and Processing 2006, 45, 1.   DOI   ScienceOn
16 Brasquet, C.; Cloirec, P. Le Carbon 1997, 35, 1307.   DOI   ScienceOn
17 Sadamura, H.; Kobayashi, S.; Honda, S.; Suzuki, N. et al. Electrochemistry 2000, 68(5), 321.
18 Dimotakis, E.; Cal, M. P.; Economy, J.; Rood, M. J.; Larson, S. M. Environ Science Technology 1995, 29, 1876.   DOI   ScienceOn
19 Cal, M. P.; Rood, M. J.; Larson, S. M. Energy and Fuels 1997, 11(2), 311.   DOI   ScienceOn
20 Shimazaki, K.; Ogawa, H. Nippon Kagaku Kaishi 1992, 7, 745.
21 Huang, Z. H.; Kang, F. Y.; Liang, K. M. Proceedings of 1st World Conference on Carbon; Berlin: German Carbon Group, 2000, 143.
22 Tang, M. M.; Bacon, R. Carbon 1964, 2(1), 211.   DOI   ScienceOn
23 Arons, G. N.; Macnair, R. N. Textile Research Journal 1972, 42(1), 60.   DOI