• Title/Summary/Keyword: Surface anisotropy

Search Result 279, Processing Time 0.025 seconds

Realistic Rendering of Woven Surface using Procedural Bump Mapping (절차적 범프 매핑을 이용한 직물표면의 사실적 렌더링)

  • Kang, Young-Min
    • Journal of Korea Game Society
    • /
    • v.10 no.3
    • /
    • pp.103-111
    • /
    • 2010
  • In this paper, an procedural approach to photorealistic rendering of woven fabric material is proposed. Previously proposed procedural approaches to fabric rendering have the disadvantage that the rendering result is not sufficiently realistic. In order to enhance the realism, researchers employed example-based approaches. However, those methods have serious disadvantage that they require huge amount of storage for the various reflectance properties of diverse materials. The proposed method can express the reflectance on weft and warp yarns by alternating the anisotropic reflectance on yarns. In addition, we propose the proposed method procedurally models the bumpy yarn structure of woven fabric to obtain plausible rendering results. The proposed method can efficiently reproduce realistic virtual fabric without any reflectance data sets.

Effect of Heat Treatment on Microstructures and Magnetic Properties of Rapidly Solidified Fe-6.5wt % Si sheet (급속응고된 Fe-6.5wt% Si 강판의 미세조직과 자기적 특성에 미치는 열처리의 영향)

  • Hwang, D.H.;Lee, K.H.;Lee, T.H.;Koo, J.M.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.2
    • /
    • pp.149-154
    • /
    • 1995
  • The alloying of 6.5wt % Silicon in iron decreases the magnetization and the anisotropy and minimizes the iron loss noticeably. But it is very difficult to make thin sheets because of its poor ductility which is due to an ordering reaction (body centered cubic to CsCI type crystal structure). However the ordering reaction can be suppressed by rapid solidification method. The cooling rate of rapidly solidified Fe-6.5wt % Si alloy is about $10^3K/s$ and rapidly solidified structure are fine structure, cellular structure, dendrite and equiaxed grain from surface. The precipitates of $DO_3$ Phase emerges on $B_2$ matrix and the coercive force was 0.51 Oe (50cycle, 15KGauss) in Fe-6.5wt% Si alloy which was processed by heat treatment of $1150^{\circ}C$ for 1hr in high vacuum.

  • PDF

Evaluation of Goundwater Flow Pattern at the Site of Crystalline Rock using Time Series and Factor Analyses (시계열분석과 요인분석에 의한 결정질 암반의 지하수 유동 평가)

  • Lee, Jeong-Hwan;Jung, Haeryong;Yun, Si-Tae;Kim, Jee-Yeon;Cho, Sung-Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.4
    • /
    • pp.12-22
    • /
    • 2014
  • This study evaluated the pattern of groundwater fluctuation in cyrstalline rock using time series and factor analyses. From the results, groundwater level for the 18 wells was classified into 4 types reflecting the hydrogeological properties and rainfall event. Type 1 (DB1-5, DB1-6, DB2-2, KB-10, KB-13) was significantly influenced by groundwater flow through water-conducting features, whereas type 2 (DB1-3, DB1-7, KB-1~KB-3, KB-7, KB-11, KB-14, KB-15) was affected by minor fracture network as well as rainfall event. Type 3 (DB1-1, DB1-2) was mainly influenced by surface infiltration of rainfall event. Type 4 (DB1-8, KB-9) was reflected by the irregular variation of groundwater level caused by anisotropy and heterogeneity of crystalline rock.

Improving Mechanical Properties of Wire Arc Additively Manufactured Ti-6Al-4V Alloy by Ultrasonic Needle Peening Treatment

  • Yi, Hui-Jun;Kim, Jin-Woo;Kim, Young-Lak;Shin, Sangyong
    • Korean Journal of Materials Research
    • /
    • v.31 no.5
    • /
    • pp.245-254
    • /
    • 2021
  • Wire arc additive manufacturing (WAAM) is being considered as a technology to replace the conventional manufacturing process of titanium alloys. However, coarse β grains, which can extend through several deposited materials, result in strong textures and anisotropy. As a solution, we study the plastic deformation effects of ultrasonic needle peening (UNP) on the microstructure. UNP treated materials deform plastically and the dislocation density increases. Fine α+α' grains with low aspect ratio are observed in the UNP treated specimens. UNP treated WAAM Ti-6Al-4V alloys have higher strength and lower elongation than those characteristics of WAAM Ti-6Al-4V alloys. Due to UNP treatment, the z-axis directional specimens exhibit a greater effect of reducing elongation than do the x-axis directional specimens. The UNP treatment produces fine grains in proportion to the number of times UNP is performed, thereby increasing strength. UNP processes produce a large number of dislocations in the WAAM Ti-6Al-4V alloys, with the most dislocations being formed at the surface.

Two-Step Etching Characteristics of Single-Si by the Plasma Etching Techique (플라즈마 식각방법에 의한 단결정 실리콘의 Two-Step 식각특성)

  • Lee, Jin Hee;Park, Sung Ho;Kim, Mal Moon;Park, Sin Chong
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.1
    • /
    • pp.91-96
    • /
    • 1987
  • Plasma etching can obtain less damaged etch surface than reactive ion etching. This study was performed to get anisotropic etching characteristics of Si using two step etching technique with C2CIF5 and SF6 gas mixture. The results show that the etch rate and aspect ratio of silicon was increased with increment of SF6 contents. The bulging phenomenon on trench side wall in the plasma one-step etching technique was eliminated by the two step etching technique. The anisotropy was decreased from 12(at 120m Torr) to 2.2(at 400m Torr) with increasing the chamber pressure. At the low rf power (350 watts) anisotrpy of silicon was obtained 7 lower than that of high rf power (650 watts. A:~9). In Summary we obtained anisotropic etching profiles of silicon with e 6\ulcornerm depth by using the plasma two-step etching technique.

  • PDF

Phase-Field Modelling of Zinc Dendrite Growth in ZnAlMg Coatings

  • Mikel Bengoetxea Aristondo;Kais Ammar;Samuel Forest;Vincent Maurel;Houssem Eddine Chaieb;Jean-Michel Mataigne
    • Corrosion Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.93-103
    • /
    • 2024
  • In the present work, a phase-field model for dendritic solidification is applied to hot-dip ZnAlMg coatings to elucidate the morphology of zinc dendrites and the solute segregation leading to the formation of eutectics. These aspects define the microstructure that conditions the corrosion resistance and the mechanical behaviour of the coating. Along with modelling phase transformation and solute diffusion, the implemented model is partially coupled with the tracking of crystal orientation in solid grains, thus allowing the effects of surface tension anisotropy to be considered in multi-dendrite simulations. For this purpose, the composition of a hot-dip ZnAlMg coating is assimilated to a dilute pseudo-binary system. 1D and 2D simulations of isothermal solidification are performed in a finite element solver by introducing nuclei as initial conditions. The results are qualitatively consistent with existing analytical solutions for growth velocity and concentration profiles, but the spatial domain of the simulations is limited by the required mesh refinement.

Quantification of Heterogenous Background Fractures in Bedrocks of Gyeongju LILW Disposal Site (경주 방폐장의 불균질 배경 단열의 정량화)

  • Cho, Hyunjin;Cheong, Jae-Yeol;Lim, Doo-hyun;Hamm, Se-Yeong
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.463-474
    • /
    • 2017
  • Heterogeneous background fractures of granite and sedimentary rocks in Gyeongju LILW (low-intermediate level radioactive waste) facility area have been characterized quantitatively by analyzing fracture parameters (orientation, intensity, and size). Surface geological survey, electrical resistivity survey, and acoustic televiewer log data were used to characterize the heterogeneity of background fractures. Bootstrap method was applied to represent spatial anisotropy of variably oriented background fractures in the study area. As a result, the fracture intensity was correlated to the inverse distance from the faults weighted by nearest fault size and the mean value of electrical resistivity and the average volumetric fracture intensity ($P_{32}$) was estimated as $3.1m^2/m^3$. Size (or equivalent radius) of the background fractures ranged from 1.5 m to 86 m and followed to power-law distribution based on the fractal property of fracture size, using fractures measured on underground silos and identified surface faults.

Liquid Crystal Alignment Stability of Polyvinylcinnamate Photonslignment Layer (Polyvinylcinnamate 광배향막의 액정 배향 안정성)

  • Lim Ji-Chul;Choi Sie-Hyung;Kim Whanki;Kim Sung Soo;Song Kigook
    • Polymer(Korea)
    • /
    • v.29 no.4
    • /
    • pp.413-417
    • /
    • 2005
  • Orientations of liquid crystal molecules on a surface of a film of photoreactive polyvinylcinnamate were investigated in order to apply as an alignment layer of LCD. When the polyvinylcinnamate film was exposed to linearly polarized W light, optical anisotropy was induced in the film through a selective photoreaction. Liquid crystal molecules on a surface of the film was aligned along the oriented polymer chain direction through intermolecular interactions. Thermal and light stability of the photoaligned LC cell were studied by investigating LC alignment changes after the alignment layer was treated with heat and W light. When the film was exposed with linearly polarized UV several times, the LC alignment was induced only along the final UV exposure direction.

Assessment of Incipient Decay of Radiata Pine Wood Using Stress-wave Technique in the Transverse Direction (횡단방향(橫斷方向) 응력파(應力波) 방법(方法)에 의(依)한 라디에타소나무의 초기부후(初期腐朽) 평가(評價))

  • Kim, Gyu-Hyeok;Jee, Woo-Guen;Ra, Jong-Bum
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.18-27
    • /
    • 1996
  • The feasibility of using stress-wave technique in the transverse direction for the assessment of early stages of decay was investigated using compression test specimens having different annual ring orientations subjected to decay by Tyromyces palustris for various time intervals. Decay detection, quantitative assessment of decay, and the prediction of residual strength of decayed wood with less than five percent weight loss can be feasible using stress-wave parameters (wave velocity, wave impedance, and stress-wave elasticity) and their percent reduction due to decay, measured by stress-wave technique in the transverse direction. The use of stress-wave technique in the transverse direction for the application of this technique to structural members in service is desirable, when considering the easiness of attachment of accelerometers of stress-wave measuring device on the surface of members and also accurate detection of localized decayed areas. In stress-wave technique in the transverse direction, stress-wave parameters measured were different according to the angles between wave propagation path and annual ring, due to the anisotropy of wood structure. Therefore, it is recommended to use percent reduction in stress-wave parameters instead of stress-wave parameters. This evaluation method using percent reduction in stress-wave parameters is ideal when it is impossible to observe annual ring orientation on the transverse surface of wood.

  • PDF

Formation of Cobalt Ferrite Epitaxial Iron Oxide and Their Magnetic Properties(II) (코발트 훼라이트 에피탁시얼 산화철의 생성과 자기특성(II))

  • Byeon, T.B.;Kim, D.Y.;Lee, J.Y.;Lee, H.;Sohn, J.G.;Han, K.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.2 no.1
    • /
    • pp.15-21
    • /
    • 1992
  • Acicular ${\gamma}-Fe_{2}O_{3}$ particles were heated at $90^{\circ}C$ in alkaline solution containing mixed solution of dyadic metal with $Co^{+2}/Fe^{+2}$ ratio of 0.5. When cobalt content was increased, the coercivity of resultant product increased linearly, and surface area decreased. The cobalt ferrite was grown epitaxially on the surface ${\gamma}-Fe_{2}O_{3}$ crystal, and the increase of coercivity was attributed to the crystalline magnetic anisotropy of the cobalt ferrite which is conform to coating layer. We can expect superior magnetic properties above normal ratio of 2. The progress of reaction has an effect on coercivity of cobalt ferrite epitaxial iron oxide. The stability of temperature and the change om standin& of $Co-{\gamma}-Fe_{2}O_{3}$ was largely influenced by the composition of coating layer.

  • PDF