• 제목/요약/키워드: Surface and Internal Defects

검색결과 119건 처리시간 0.025초

집중유도 교류 전위차법을 이용한 철도차량 차륜의 표면과 내부 결함 평가 (Evaluation of Surface and Sub-surface defects in Railway Wheel Using Induced Current Focused Potential Drops)

  • 이동형;권석진
    • 한국철도학회논문집
    • /
    • 제10권1호
    • /
    • pp.1-6
    • /
    • 2007
  • Railway wheels in service are regularly checked by ultrasonic testing, acoustic emission and eddy current testing method and so on. However, ultrasonic testing is sometimes inadequate for sensitively detecting the cracks in railway wheel which is mainly because of the fact of crack closure. Recently, many researchers have actively fried to improve precision for defect detection of railway wheel. The development of a nondestructive measurement tool for wheel defects and its use for the maintenance of railway wheels would be useful to prevent wheel failure. The induced current focusing potential drop(ICFPD) technique is a new non-destructive tasting technique that can detect defects in railway wheels by applying on electro-magnetic field and potential drops variation. In the present paper, the ICFPD technique is applied to the detection of surface and internal defects for railway wheels. To defect the defects for railway wheels, the sensor for ICFPD is optimized and the tests are carried out with respect to 4 surface defects and 6 internal defects each other. The results show that the surface crack depth of 0.5 mm and internal crack depth of 0.7 mm in wheel tread could be detected by using this method. The ICFPB method is useful to detect the defect that initiated in the tread of railway wheels

Defect Monitoring In Railway Wheel and Axle

  • Kwon, Seok-Jin;Lee, Dong-Hyoung;You, Won-Hee
    • International Journal of Railway
    • /
    • 제1권1호
    • /
    • pp.1-5
    • /
    • 2008
  • The railway system requires safety and reliability of service of all railway vehicles. Suitable technical systems and working methods adapted to it, which meet the requirements on safety and good order of traffic, should be maintained. For detection of defects, non-destructive testing methods-which should be quick, reliable and cost-effective - are most often used. Since failure in railway wheelset can cause a disaster, regular inspection of defects in wheels and axles are mandatory. Ultrasonic testing, acoustic emission and eddy current testing method and so on regularly check railway wheelset in service. However, it is difficult to detect a crack initiation clearly with ultrasonic testing due to noise echoes. It is necessary to develop a non-destructive technique that is superior to conventional NDT techniques in order to ensure the safety of railway wheelset. In the present paper, the new NDT technique is applied to the detection of surface defects for railway wheelset. To detect the defects for railway wheelset, the sensor for defect detection is optimized and the tests are carried out with respect to surface and internal defects each other. The results show that the surface crack depth of 1.5 mm in press fitted axle and internal crack in wheel could be detected by using the new method. The ICFPD method is useful to detect the defect that initiated in railway wheelset.

  • PDF

DEFECT EVALUATION IN RAILWAY WHEELSETS

  • Kwon, Seok-Jin;Lee, Dong-Hyong;Seo, Jung-Won;You, Won-Hee
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.1940-1945
    • /
    • 2007
  • The wheelsets are one of most important component: damages in wheel tread and press fitted axle are a significant cost for railway industry. Since failure in railway wheelset can cause a disaster, regular inspection of defects in wheels and axles are mandatory. Ultrasonic testing, acoustic emission and eddy current testing method and so on regularly check railway wheelset in service. However, it is difficult to use this method because of its high viscosity and because its sensitivity is affected by temperature. Also, due to noise echoes it is difficult to detect defects initiation clearly with ultrasonic testing. It is necessary to develop a non-destructive technique that is superior to conventional NDT techniques in order to ensure the safety of railway wheelset. In the present paper, the new NDT technique is applied to the detection of surface defects for railway wheelset. To detect the defects for railway wheelset, the sensor for defect detection is optimized and the tests are carried out with respect to surface and internal defects each other. The results show that the surface crack depth of 1.5 mm in press fitted axle and internal crack in wheel could be detected by using the new method. The ICFPD method is useful to detect the defect that initiated in the tread of railway wheelset.

  • PDF

반용융 성형공장에서 표면 및 내부 조직 제어에 관한 연구 (A Study on Conrol of Surfacial and Internal Microsructure in Thixoforming Process)

  • 이동건
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.169-172
    • /
    • 1999
  • Thixoforming process has been accepted as a new method for fabricating near net shaped products with lighweight aluminum alloys. The thixoforming process consists of reheating process of billet, billet handing filling into the die cavity and solidification of thixoformed part,. in this paper the thixoforming experiments are performed with two different die temperature ({{{{ TAU _d}}}}=20$0^{\circ}C$ 30$0^{\circ}C$) and orifice gate type. The microstructures of SSM(357, A490 and ALTHIX 86S) fabricated in thixoforming process are evaluated in therms of globularization and grain size. effect of alloying elements onthe surface and internal defects is investigated. Finally the methods to obtain the thixoformed products with good mechanical propertis are proposed by solution for avoiding the surface and internal defects.

  • PDF

레일표면결함과 레일내부균열의 상관관계 분석 (Correlation Analysis of Rail Surface Defects and Rail Internal Cracks)

  • 최정열;한재민;김영기
    • 문화기술의 융합
    • /
    • 제10권1호
    • /
    • pp.585-590
    • /
    • 2024
  • 본 연구에서는 현재 도시철도 레일의 노후화로 인한 레일표면결함이 증가하고 있으나 국가에서 제정된 궤도성능평가에 관한 세부지침에서 레일표면손상을 기술자의 육안, 간단한 측정 도구로 점검을 수행하는 실정이다. 최근 궤도진단법 제정에 따라 대규모 예산이 투입되고 레일진단물량이 급증되고 있으나 노동집약적인 육안조사기법으로는 진단결과에 대한 신뢰성확보가 어려운 실정이다. 주기적인 선로순회작업 및 육안점검을 통해 레일표면의 결함을 발견하는 것은 매우 중요하다. 그러나 점검자의 주관적 판단에 의해 레일표면의 결함의 경중을 평가하는 것은 레일 내부의 손상을 예측하기에 상당한 제약이 따른다. 본 연구에서는 레일표면손상에 따른 레일내부 균열특성 관한 연구로서 현장측정에서는 레일표면 손상개소를 선정하여 다양한 손상유형의 시료를 채취하여 레일표면손상 상태를 평가하고 실내시험에서 전자주사현미경(SEM)을 이용하여 레일표면결함 및 내부결함의 상관관계를 분석하고자 한다. 또한 실내시험의 결과와 수치해석 결과를 비교를 통하여 레일표면손상을 분석하였다. 현재 공용중인 도시철도 레일의 균열성장율을 파악하고자 가우시안 확률밀도 함수를 적용하여 분석하였다.

Behavioral Characteristics of Fatigue Cracks in Small Hole Defects Located on Opposite Sides of the Shaft Cross Section

  • Sam-Hong;Il-Hyuk;Jeong-Moo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제5권4호
    • /
    • pp.36-42
    • /
    • 2004
  • The shaft with the circular cross section has symmetric structural combination parts to keep the rotating balance. Hence the crack usually initiates from symmetric combination parts due to the stress concentration of these parts. In this study to estimate the fatigue behavior of symmetric cracks, the fatigue test was performed by using a rotary bending tester and the specimen with symmetric defects in circular cross section. The characteristics of crack initiation and propagation on the symmetric surface cracks in circular cross section were examined. We also observed the internal crack using the oxidation coloring method and investigated the fatigue behavior using the relationship between the surface crack and the internal crack. As a result, the fatigue life of symmetric cracks was reduced by 35% compared to that of a single crack. We examined the characteristics of fatigue behavior of elements with symmetric cracks using internal crack propagation rate and maximum stress intensity factor range that were obtained from an approximation method.

초음파 서모그래피를 적용한 피스톤 스커트 절단균열에 대한 비파괴 신뢰성 평가 (The Nondestructive Reliability Evaluation which it Applies Ultrasound Thermography about Cutting Crack of Piston Skirt)

  • 양용하;마상동;김재열
    • Tribology and Lubricants
    • /
    • 제26권6호
    • /
    • pp.336-340
    • /
    • 2010
  • Ultrasound thermography detects defects by radiating 20 ~ 30 kHz ultrasound waves to the samples and capturing the heat generated from the defects with the use of an infrared thermographic camera. This technology is being spotlighted as a next-generation NDE for the automobile and aerospace industries because it can test large areas and can detect defects such as cracks and exfoliations in real time. The heating mechanism of the ultrasound vibration has not been accurately determined, but the thermomechanical coupling effect and the surface or internal friction are estimated to be the main causes. When this heat is captured by an infrared thermographic camera, the defects inside or on the surface of objects can be quickly detected. Although this technology can construct a testing device relatively simply and can detect defects within a short time, there are no reliable data about the factors related to its detection ability. In this study, the ultrasound thermography technique was used to manufacture gasoline and diesel engine piston specimens, and nondestructive reliability tests to verify the applicability and validity of the ultrasound thermography technique.

축단면 내 대칭위치에 존재하는 원공결함에서 발생하는 피로균열 거동 (The Characteristics of Fatigue Cracks Emanating from Small Hole Defects Located Opposite Position of the Shaft Cross Section)

  • 송삼홍;안일혁;이정무
    • 한국정밀공학회지
    • /
    • 제19권10호
    • /
    • pp.84-91
    • /
    • 2002
  • The shaft with the circular cross section have symmetric structural combination parts to keep the rotating balance. Hence the crack usually emanate from symmetric combination parts due to the stress concentration of these parts. In this study to estimate the fatigue behavior of symmetric cracks, the fatigue test was performed by using rotary bending tester and the specimen with symmetric defects in circular cross section. From the facts the characteristics of crack initiation and propagation on the symmetric surface cracks in circular cross section was examined. Also we observed the internal crack using oxidation coloring and investigated the fatigue behavior using the relationship between surface crack and internal crack. As a result of fatigue lift of symmetric cracks was reduced to 35% compared to single crack’s. We examined the characteristics of fatigue behavior in element with symmetric cracks using internal crack propagation rate and maximum stress intensity factor range obtained from approximation method.

광소자로 사용되는 ZnTe박박의 결정성에 따른 결함 관찰 (Crystallinity and Internal Defect Observation of the ZnTe Thin Film Used by Opto-Electronic Sensor Material)

  • Kim, B.J.
    • 한국표면공학회지
    • /
    • 제35권5호
    • /
    • pp.289-294
    • /
    • 2002
  • ZnTe films have been grown on (100) GaAs substrate with two representative problems. The one is lattice mismatch, the other is thermal expansion coefficients mismatch of ZnTe /GaAs. It claims here, the relationship of film thickness and defects distribution with (100) ZnTe/GaAs using hot wall epitaxy (HWE) growth was investigated by transmission electron microscopy (TEM). It analyzed on the two-sort side using TEM with cross-sectional transmission electron microscopy (XTEM) and high-resolution electron microscopy (HREM). Investigation into the nature and behavior of dislocations with dependence-thickness in (100) ZnTe/ (100) GaAs hetero-structures grown by transmission electron microscopy (TEM). This defects range from interface to 0.7 $\mu\textrm{m}$ was high density, due to the large lattice mismatch and thermal expansion coefficients. The defects of low density was range 0.7$\mu\textrm{m}$~1.8$\mu\textrm{m}$. In the thicker range than 1.8$\mu\textrm{m}$ was measured hardly defects.

동적재료모델을 활용한 열간 후방압출된 Ti-6Al-4V튜브의 성형결함 해석 (Assessment of Forming Defects in Hot Backward Extruded Ti-6Al-4V Tubes using Dynamic Materials Model)

  • 염종택;심인규;박노광;홍성석;심인옥
    • 소성∙가공
    • /
    • 제12권6호
    • /
    • pp.566-571
    • /
    • 2003
  • The metal forming behavior and defect formation in Ti-6Al-4V tube during hot backward extrusion were investigated. Dynamic material model(DMM) including Ziegler's instability criterion was employed to predict the forming defects such as shear band, inner and/or surface cracks. This approach was coupled to the internal variables generated from FE analysis. The simulation results fur the backward extrusion were compared with the experimental observation. The chilling effect and friction indicated a great influence on the deformation mode of the tube and the formation of surface cracks. The formation of forming defects in the extruded tube was attributed to non-uniform distribution of strain, strain rate and temperatures in the extruded tubes for the given test conditions.