• Title/Summary/Keyword: Surface adsorption

Search Result 2,340, Processing Time 0.508 seconds

Effects of Carbonation on the Microstructure of Cement Materials: Influence of Measuring Methods and of Types of Cement

  • Pham, Son Tung;Prince, William
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.4
    • /
    • pp.327-333
    • /
    • 2014
  • The objective of this work was to examine the influence of carbonation on the microstructure of cement materials. Different materials, which were CEM I mortar and paste, CEM II mortar and paste, were carbonated at $20^{\circ}C$, 65 % relative humidity and 20 % of $CO_2$ concentration. The specific surface area and pore size distribution were determined from two methods: nitrogen adsorption and water adsorption. The results showed that: (1) nitrogen adsorption and water adsorption do not cover the same porous domains and thus, we observed conflicts in the results obtained by these two techniques; (2) the CEM II based materials seemed to be more sensible to a creation of mesoporosity after carbonation than the CEM I based materials. The results of this study also helped to explain why observations in the literature diverge greatly on the influence of carbonation on specific surface area.

Study on Adsorption Characteristics of Tharonil from Aqueous Solution by Activated Carbon Adsorption (활성탄에 의한 Tharonil의 흡착특성에 관한 연구)

  • 이종집;유용호
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.4
    • /
    • pp.88-94
    • /
    • 2000
  • The adsorption characteristics of Tharonil on granular activated carbon were experimentally investigated in an adsorber and in a packed column. It was estabilished that the adsorption equilibrium of Tharonil on granular activated carbon was more successfully fitted by Freundlich isotherm equation than Langmuir isotherm equation in the concentration range from 1 to 1000 mg/1. Intraparticle diffusivities (pore and surface diffusivity) of Tharonil were estimated by the concentration-time curve and adsorption isotherm. The estimated values of pore diffusivity and surface diffusivity are $6.70{\times}10^{-6}$ and $2.0{\times}10^{-9}cm^2/s$, respectively. From comparison of intraparticle diffusivities, it was found that surface diffusion was the limiting step for adsorption rate. The break time and breakthrough curve predicted by constant pattern-linear driving force model were shown to agree with the experimental results.

  • PDF

The Adsorption of the 3-methyl 5-pyrazolone on the Ge(100) Surface

  • Lee, Myeong-Jin;Lee, Han-Gil
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.189.2-189.2
    • /
    • 2014
  • The most stable adsorption structures and energies of four tautomerized forms (keto-1, enol-1, keto-2, and enol-2) of 3-methyl 5-pyrazolone (MP) adsorbed on Ge(100) surfaces have been investigated by Density Functional Theory (DFT) calculation method. Among its four tautomerized forms, we confirmed three tautomerized forms except keto-1 form show the stable adsorption structures when they adsorbed on the Ge(100)-$2{\times}1$ surface as we calculate the respective stable adsorption structures, activation barrier, transition state energy, and reaction pathways. Moreover, among three possible adsorption structures, we acquired that enol-2 form has most stable adsorption structure with O-H dissociated N-H dissociation bonding structure.

  • PDF

Water Vapor Adsorption on Soils II. Estimation of Adsorption Energy Distributions Using Local BET and Aranovich Isotherms (토양에서의 수증기 흡착 II. BET와 Aranovich 등온식을 이용한 한국토양에서 수증기 흡착에너지 분포의 추정)

  • Jozefaciuk, G.;Shin, Jae-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.3
    • /
    • pp.218-225
    • /
    • 1996
  • Using water vapor adsorption data foe some typical Korean soils. we calculated the adsorption energy distribution functions and average adsorption energies for these soils using theory of adsorption on hetergeneous surfaces. As a local adsorption models the BET and a new Aranovich equations were applied. The distribution functions were broad, indicating rather high energetic inhomogeneity of the surface.

  • PDF

Adsorption of Cu(II) Ions onto Myristica Fragrans Shell-based Activated Carbon: Isotherm, Kinetic and Thermodynamic Studies

  • Syahiddin, D.S.;Muslim, A.
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.2
    • /
    • pp.79-86
    • /
    • 2018
  • This study reported the adsorption of Cu(II) ions onto activated carbon prepared from Myristica Fragrans shell (MFS AC) over independent variables of contact time, activating chemical (NaOH) concentration, initial adsorbate concentration, initial pH of adsorbate solution and adsorption temperature. The MFS AC structure, morphology and total surface area were characterized by FTIR, SEM and BET techniques, respectively. The Cu(II) ions adsorption on the MFS AC (activated using 0.5 M NaOH) fitted best to Freundlich adsorption isotherm (FAI), and the FAI constant obtained was 0.845 L/g at $30^{\circ}C$ and pH 4.5. It followed the pseudo first order of adsorption kinetic (PFOAK) model, and the PFOAK based adsorption capacity was 107.65 mg/g. Thermodynamic study confirmed the Cu(II) ions adsorption should be exothermic and non-spontaneous process, physical adsorption should be taken place. The total surface area and pore volume based on BET analysis was $99.85m^2/g$ and 0.086 cc/g, respectively.

Effect of Salicylic and Picolinic Acids Acids on the Adsorption of U(VI) onto Oxides (산화물 표면의 U(VI) 흡착에 미치는 살리실산과 피콜린산의 영향)

  • Park, Kyoung-Kyun;Jung, Euo-Chang;Cho, Hye-Ryun;Song, Kyu-Seok
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.4
    • /
    • pp.219-227
    • /
    • 2009
  • The effect of organic acids on the adsorption of U(VI) onto oxide surfaces ($TiO_2)$(anatase), $SiO_2$(amorphous) and $Al_2O_3$(amorphous)) has been investigated. Two different organic acids, salicylic and picolinic acids, were used. Changes of adsorption ratio of U(VI), which depend on the existence of organic acids in a sample, were measured as a function of pH. Quantities of adsorbed organic acids, which depend on the existence of U(VI) in a sample, were also measured as a function of pH. It is confirmed that the soluble complex formation of U(VI) with organic acids can deteriorate the adsorption of U(VI) onto $TiO_2$ surface. It is noteworthy that salicylic acid does not affect the adsorption of U(VI) onto $SiO_2$ surface, however, picolinic acid enhances the adsorption of U(VI) onto $SiO_2$ surface. The latter effect can be understood by considering the formation of a ternary surface complex on $SiO_2$ surface, which was confirmed by the co-adsorption of picolinic acid with U(VI) and the change in a fluorescence spectra of U(VI) on surface, In the case of $Al_2O_3$, organic acids themselves were largely adsorbed onto a surface without deteriorating the adsorption of U(VI). This would support the possibility of a ternary surface complex formation on the $Al_2O_3$ surface, and an additional spectroscopic study is required.

  • PDF

Mechanisms of Platelet Adhesion on Elastic Polymer Surfaces: Protein Adsorption and Residence Effects

  • Insup Noh;Lee, Jin-Hui
    • Macromolecular Research
    • /
    • v.9 no.4
    • /
    • pp.197-205
    • /
    • 2001
  • Platelet adhesion onto elastic polymeric biomaterials was tested in vitro by perfusing human whole blood at a shear rate of 100 sec$\^$-1/ for possible verification of mechanisms of initial platelet adhesion perfusion of blood on the polymeric substrates was performed after treatments either with or without pre-adsorption of 1% blood plasma, and either with or without residence of the protein-preadsorbed substrate in phosphate buffered solution. The surfaces employed were elastic polymers such as poly(ether urethane urea), poly(ether urethane), silicone urethane copolymer, silicone rubber and poly(ether urethane) with the anti-calcifying agent hydroxyethane bisphosphate. Each polymer surface treated was exposed in vitro to the dynamic, heparinized whole blood perfused for upto 6 min and the surface area of platelets initially adhered was measured by employing in situ epifluorescence video microscopy. The blood perfusion was performed on the surfaces treated at the following three different conditions: directly on the bare surfaces, after protein pre-adsorption and after residence in buffer for 3 days of the surfaces protein pre-adsorbed for 2 h. The effects of blood plasma pre-adsorption on the initial platelet adhesion was surface-dependent. The amount of the adsorbed fibrinogen and the surface coverage area of the adhered platelets were dependent on the surface conditions whether substrates were bare surfaces or protein pre-adsorbed ones. To test an effect of possible morphological (re)orientations of the adsorbed proteins on the initial platelet adhesion, the polymeric substrate pre-adsorbed with 1% blood plasma was immersed in phosphate buffered solution for 3 days and then exposed to physiological blood perfusion. The surface area of the platelets adhered on these surfaces was significantly different from that of the surfaces treated with protein pre-adsorption only. These results indicated that platelet adhesion was dependent on the surface property itself and pre-treatment conditions such as blood perfusion without any pre-adsorption of proteins, and blood perfusion either after protein pre-adsorption or after subsequent substrate residence in buffer of the substrate pre-adsorbed with proteins. Understanding of these results may guide for better designs of blood-contacting materials based on protein behaviors.

  • PDF

Removal of Trihalomethanes from Tap Water using Activated Carbon Fiber (활성탄소섬유를 사용한 수돗물 내 트리할로메탄의 제거)

  • Yoo, Hwa In;Ryu, Seung Kon
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.83-87
    • /
    • 2012
  • Activated carbon fiber (ACF) was used to remove four kinds of trihalomethanes(THMs) from tap water which were remained as by-products during the chlorination of water. Adsorption capacity was investigated as a function of THMs concentration and solution temperature, and adsorption mechanism was studied in relating to the surface characteristics of ACF. All the four kinds of THMs were rapidly adsorbed on the surface of ACF by physical adsorption due to the enormous surface micropores and chemical adsorption due to the hydrogen bonds, showing a Langmuir type adsorption isotherm. Langmuir type is especially profitable for the adsorption of low level adsorptives. ACF was very effective for the removal of THMs from tap water because the THMs concentration is below $30{\mu}g/L$ in tap water. The adsorption amount of THMs on ACF increased in order of the number of brom atom; chloroform, bromodichloromethane, dibromochloromethane, and bromoform. The adsorption capacity increased as increasing the number of brom atom due to the decrease of polarity in solution. The adsorption capacity of THMs on ACF can be enhanced by proper surface treatment of ACF.

Elemental Mercury Adsorption Behaviors of Chemically Modified Activated Carbons

  • Kim, Byung-Joo;Bae, Kyong-Min;An, Kay-Hyeok;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1321-1326
    • /
    • 2011
  • In this work, the effects of different surface functional groups on the elemental mercury adsorption of porous carbons modified by chemical treatments were investigated. The surface properties of the treated carbons were observed by Boehm's titration and X-ray photoelectron spectroscopy (XPS). It was found that the textural properties, including specific surface area and pore structures, slightly decreased after the treatments, while the oxygen content of the ACs was predominantly enhanced. Elemental mercury adsorption behaviors of the acidtreated ACs were found to be four or three times better than those of non-treated ACs or base-treated ACs, respectively. This result indicates that the different compositions of surface functional groups can lead to the high elemental mercury adsorption capacity of the ACs. In case of the acid-treated ACs, the $R_{C=O}/R_{C-O}$ and $R_{COOH}/R_{C-O}$ showed higher values than those of other samples, indicating that there is a considerable relationship between mercury adsorption and surface functional groups on the ACs.