• 제목/요약/키워드: Surface active glass

검색결과 45건 처리시간 0.033초

Staggered and Inverted Staggered Type Organic-Inorganic Hybrid TFTs with ZnO Channel Layer Deposited by Atomic Layer Deposition

  • Gong, Su-Cheol;Ryu, Sang-Ouk;Bang, Seok-Hwan;Jung, Woo-Ho;Jeon, Hyeong-Tag;Kim, Hyun-Chul;Choi, Young-Jun;Park, Hyung-Ho;Chang, Ho-Jung
    • 마이크로전자및패키징학회지
    • /
    • 제16권4호
    • /
    • pp.17-22
    • /
    • 2009
  • Two different organic-inorganic hybrid thin film transistors (OITFTs) with the structures of glass/ITO/ZnO/PMMA/Al (staggered structure) and glass/ITO/PMMA/ZnO/Al (inverted staggered structure), were fabricated and their electrical and structural properties were compared. The ZnO thin films used as active channel layers were deposited by the atomic layer deposition (ALD) method at a temperature of $100^{\circ}C$. To investigate the effect of the substrates on their properties, the ZnO films were deposited on bare glass, PMMA/glass and ITO/glass substrates and their crystal properties and surface morphologies were analyzed. The structural properties of the ZnO films varied with the substrate conditions. The ZnO film deposited on the ITO/glass substrate showed better crystallinity and morphologies, such as a higher preferred c-axis orientation, lower FWHM value and larger particle size compared with the one deposited on the PMMA/glass substrate. The field effect mobility ($\mu$), threshold voltage ($V_T$) and $I_{on/off}$ switching ratio for the OITFT with the staggered structure were about $0.61\;cm^2/V{\cdot}s$, 5.5 V and $10^2$, whereas those of the OITFT with the inverted staggered structure were found to be $0.31\;cm^2/V{\cdot}s$, 6.8 V and 10, respectively. The improved electrical properties for the staggered OITFTs may originate from the improved crystal properties and larger particle size of the ZnO active layer.

  • PDF

알루미나에 코팅된 불화물 생체유리에의 수산화 아파타이트 형성 (Hydroxyapatite Formation on Fluoride Bioactive Glasses coated on Alumina)

  • 안현수;이은성;김철영
    • 한국세라믹학회지
    • /
    • 제36권10호
    • /
    • pp.1087-1093
    • /
    • 1999
  • Bioglass which is one of the surface active bionmaterials has a good biocompatibility but a poor mechanical strength, In the present work therefore two types of fluoride-containing bioglasses were coated on an alumina to improve mechanical strength. Crystallization of the coating layer and the hydroxyapatite formation on the bioactive glass coatings in tris-buffer solution were studied. When bioactive glass coated alumina was heat-treated Na2CaSi3O8 crystal was formed on the layer at lower temperature while wollastonite(CaSIO3) was obtained at higher temperature. Hydroxyapatite forming rate on the coating layer with Na2CaSi3O8 crystal was delayed with SiO2 contents in glass composition. However the hydroxyapatite was developed in 20minutes regardless SiO2 contents when the coating layer crystallized into wollastonite. More amount of P3+ ions were leached out of the coating layer with wollastonite than that with Na2CaSi3O8 crystal while Na+ and Ca2+ ions were leached out more easily from the Na2CaSi3O8 crystal containing coating layer.

  • PDF

우주선용 고온 절연체의 표면 코팅 재료 개발 (Development of protection coating material on the surface of insulation tiles of space vehicle)

  • 김영채;문세기
    • 한국결정성장학회지
    • /
    • 제5권4호
    • /
    • pp.370-377
    • /
    • 1995
  • 우주 항공 기술의 첨단인 Space Shuttle Orbiter(SSO)의 두 coating material 인 Reaction Cured Glass(RCG)와 Spinel(C742)을 제조하여, 표면 위에 부딪히는 원자들의 재결합 가능성 $\gamma$를 확산반응기에서 측정하였다. SSO의 재진입 온도인 약 1000K에서 C742의 산소 원자들의 재결합 가능성 $\gamma$$3 {\times} 10^{-2}$으로 RCG에서의 $4 {\times} 10^{-4}$ 보다는 더 큰 값을 갖는다. C742에서 $\gamma$값이 더 높다는 것은 RCG에서 보다 더 많은 활성점을 갖고 있다는 것을 의미한다. 낮은 온도에서 활성점에 있는 원자의 탈착을 유도함으로써 보다 활성이 낮은 표면 코팅 재료를 개발할 수 있다.

  • PDF

Fabrication of Flexible Surface-enhanced Raman-Active Nanostructured Substrates Using Soft-Lithography

  • 박지윤;장석진;여종석
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.411-411
    • /
    • 2012
  • Over the recent years, surface enhanced Raman spectroscopy (SERS) has dramatically grown as a label-free detecting technique with the high level of selectivity and sensitivity. Conventional SERS-active nanostructured layers have been deposited or patterned on rigid substrates such as silicon wafers and glass slides. Such devices fabricated on a flexible platform may offer additional functionalities and potential applications. For example, flexible SERS-active substrates can be integrated into microfluidic diagnostic devices with round-shaped micro-channel, which has large surface area compared to the area of flat SERS-active substrates so that we may anticipate high sensitivity in a conformable device form. We demonstrate fabrication of flexible SERS-active nanostructured substrates based on soft-lithography for simple, low-cost processing. The SERS-active nanostructured substrates are fabricated using conventional Si fabrication process and inkjet printing methods. A Si mold is patterned by photolithography with an average height of 700 nm and an average pitch of 200 nm. Polydimethylsiloxane (PDMS), a mixture of Sylgard 184 elastomer and curing agnet (wt/wt = 10:1), is poured onto the mold that is coated with trichlorosilane for separating the PDMS easily from the mold. Then, the nano-pattern is transferred to the thin PDMS substrates. The soft lithographic methods enable the SERS-active nanostructured substrates to be repeatedly replicated. Silver layer is physically deposited on the PDMS. Then, gold nanoparticle (AuNP) inks are applied on the nanostructured PDMS using inkjet printer (Dimatix DMP 2831) to deposit AuNPs on the substrates. The characteristics of SERS-active substrates are measured; topology is provided by atomic force microscope (AFM, Park Systems XE-100) and Raman spectra are collected by Raman spectroscopy (Horiba LabRAM ARAMIS Spectrometer). We anticipate that the results may open up various possibilities of applying flexible platform to highly sensitive Raman detection.

  • PDF

금형온도 능동제어 시스템 적용을 위한 고 내구성 마이크로 히터의 설계 및 제작 (Design and Fabrication of Durable Micro Heater for Intelligent Mold System)

  • 노철용;김영민;최용;강신일
    • 정보저장시스템학회:학술대회논문집
    • /
    • 정보저장시스템학회 2005년도 추계학술대회 논문집
    • /
    • pp.26-30
    • /
    • 2005
  • Stamper surface temperature is very critical in replicating the high density optical disc substrates using injection molding as the pit or land/groove patterns on the optical disc substrate have decreased due to the rapid increase of areal density. During the filling stage, the polymer melt in the vicinity of the stamper surfaces rapidly solidifies and the solidified layer generated during polymer filling greatly deteriorates transcribability and fluidity of polymer melt. To improve transcribability and fluidity of polymer melt, stamper surface temperature should be controlled such that the growth of the solidified layer is delayed during the filling stage. In this study, the effect of heating on replication process was simulated numerically. Then, an injection mold equipped with instant active heating system was designed and constructed to raise the stamper surface temperature over the glass transition temperature during filling stage of the injection molding. Also, the closed loop controller using the Kalman filter and the linear quadratic Gaussian regulator was designed. As a result, the stamper surface temperature was controlled according to the desired reference stamper surface temperature.

  • PDF

금형온도 능동제어 시스템 적용을 위한 고 내구성 마이크로 히터의 설계 및 제작 (Design and Fabrication of Durable Micro Heater for Intelligent Mold System)

  • 노철용;김영민;최용;강신일
    • 정보저장시스템학회논문집
    • /
    • 제2권2호
    • /
    • pp.100-104
    • /
    • 2006
  • Stamper surface temperature is very critical in replicating the high density optical disc substrates using injection molding as the pit or land/groove patterns on the optical disc substrate have decreased due to the rapid increase of areal density. During the filling stage, the polymer melt in the vicinity of the stamper surfaces rapidly solidifies and the solidified layer generated during polymer filling greatly deteriorates transcribability and fluidity of polymer melt. To improve transcribability and fluidity of polymer melt, stamper surface temperature should be controlled such that the growth of the solidified layer is delayed during the filling stage. In this study, the effect of heating on replication process was simulated numerically. Then, an injection mold equipped with instant active heating system was designed and constructed to raise the stamper surface temperature over the glass transition temperature during filling stage of the injection molding. Also, the closed loop controller using the Kalman filter and the linear quadratic Gaussian regulator was designed. As a result. the stamper surface temperature was controlled according to the desired reference stamper surface temperature.

  • PDF

골내낭에 매식된 수종의 생체요법재료에 대한 조직학적 연구 (Histologic Study Of Different Bioceramic Implants In Intrabony Defects)

  • 이철우;최상묵;한수부;박상현;김현종
    • Journal of Periodontal and Implant Science
    • /
    • 제26권1호
    • /
    • pp.27-46
    • /
    • 1996
  • The purpose of this study was designed to compare with the effects of 4 different surface active bioceramics on the healing process of alveolar bone defects in dogs. Artificial alveolar bone defects depth 4-6mm, width 3-4mm) were created with # 6 round bur at interproximal areas of maxillary canine, maxillary 2nd premolar, mandibular canine, and mandibular 3rd premolar. porous hydroxyapatite(Interpore $200^R$) , 45S5 bioglass, CJ4/lOC crystalline glass, and JJ crystalline glass were implanted in intrabony defects randomly. Experimental groups were divided into 4 categories according to its implant material. After implantation, all groups were examined postoperatively 4 weeks to 12 weeks. 3 dogs was selected randomly and sacrificed after vascular perfusion with 2.5% glutaraldehyde at every 4 weeks. Tissue blocks with surroundig alveolar bone and soft tissues were removed and immersed in formaldehyde/glutaraldehyde fixative. After 20 weeks decalcification with EDTA and formic acid, sections were made and observed under light microscope and transmission electron microscope. In all experimental groups, the encapsulation of inactive connective tissue was observed around graft particles in 4 weeks. As time elapsed, the thickness of surrounding connective tissue was decreased. Osteoconductive bone growth pattern was seen apparently in all groups. CJ4/lOC crystalline glass showed the most active bone formation until 8 weeks. 45S5 bioglass was, however, the most active in new bone formation at 12 weeks. Though there was difference in resorption rate among grafting materials, the size of graft particles was decreased gradually. 45S5 bioglass was resorbed faster than the others. On the other hand, porous hydroxyapatite was degraded most slowly. Phagocytosed particulate matters was observed in the cytoplasm of multinuclear multinuclear giant cell and macrophage under transmission electron microscope. The results suggested suggested that 45S5 bioglass and CJ4/lOC crystalline glass may have some enhanced reparative potential when compared to porous hydroxapatite in the treatment of periodontal defeds. JJ crystalline glass reguires a further investigation of the safety of its use.

  • PDF

프리 패턴한 비정질 실리콘 박막의 two-step RTA 효과 (THE TWO-STEP RAPID THERMAL ANNEALING EFFECT OF THE PREPATTERNED A-SI FILMS)

  • 이민철;박기찬;최권영;한민구
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 D
    • /
    • pp.1333-1336
    • /
    • 1998
  • Hydrogenated amorphous silicon(a-Si:H) films which were deposited by plasma enhanced chemical deposition(PECVD) have been recrystallized by the two-step rapid thermal annealing(RTA) employing the halogen lamp. The a-Si:H films evolve hydrogen explosively during the high temperature crystallzation step. In result, the recrystallized polycrystalline silicon(poly-Si) films have poor surface morphology. In order to avoid the hydrogen evolution, the films have undergone the dehydrogenation step prior to the crystallization step Before the RTA process, the active area of thin film transistors (TFT's) was patterned. The prepatterning of the a-Si:H active islands may reduce thermal damage to the glass substrate during the recrystallization. The computer generated simulation shows the heat propagation from the a-Si:H islands into the glass substrate. We have fabricated the poly-Si TFT's on the silicon wafers. The maximun ON/OFF current ratio of the device was over $10^5$.

  • PDF

Active-Matrix Cathodes though Integration of Amorphous Silicon Thin-Film Transistor with triode -and Diode-Type field Emitters

  • Song, Yoon-Ho;Cho, Young-Rae;Hwang, Chi-Sun;Kim, Bong-Chul;Ahn, Seong-Deok;Chung, Choong-Heui;Kim, Do-Hyung;Uhm, Hyun-Seok;Lee, Jin-Ho;Cho, Kyoung-Ik
    • Journal of Information Display
    • /
    • 제2권3호
    • /
    • pp.72-77
    • /
    • 2001
  • Amorphous silicon thin-film transistors (a-Si TFTs) were incorporated into Mo-tip-based triode-type field emitters and diode-type ones of carbon nanotubes for an active-matrix cathode (AMC) plate of field emission displays. Also, we developed a novel surface-treatment process for the Mo-tip fabrication, which gleatly enhanced in the stability of field emission. The field emission currents of AMC plates on glass substrate were well controlled by the gate bias of a-Si TFTs. Active-matrix field emission displays (AMFEDs) with these AMC plates were demonstrated in a vacuum chamber, showing low-voltage matrix addressing, good stability and reliability of field emission, and highly uniform light emissions from the anode plate with phosphors. The optimum design of AMFEDs including a-Si TFTs and a new light shield/focusing grid is discussed.

  • PDF

Effect of Thermal Annealing on Nanoscale Thickness and Roughness Control of Gravure Printed Organic Light Emitting for OLED with PVK and $Ir(ppy)_3$

  • Lee, Hye-Mi;Kim, A-Ran;Kim, Dae-Kyoung;Cho, Sung-Min;Chae, Hee-Yeop
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.1511-1514
    • /
    • 2009
  • Organic light emitting layer in OLED device was formed by gravure printing process in this work. Organic surface coated by gravure printing typically showed relatively bad uniformity. Thickness and roughness control was characterized by applying various mixed solvents in this work. Poly (N-vinyl carbazole) (PVK) and fact-tris(2-phenylpyridine)iridium($Ir(ppy)_3$) are host dopant system materials. PVK was used as a host and Ir(ppy)3 as green-emitting dopant. To luminance efficiency of the plasma treatment on etched ITO glass and then PEDOT:PSS spin coated. The device layer structure of OLED devices is as follow Glass/ITO/PEDOT:PSS/PVK+Ir(ppy)3-Active layer /LiF/Al. It was printed by gravure printing technology for polymer light emitting diode (PLED). To control the thickness multi-printing technique was applied. As the number of the printing was increased the thickness enhancement was increased. To control the roughness of organic layer film, thermal annealing process was applied. The annealing temperature was varied from room temperature, $40^{\circ}C$, $80^{\circ}C$, to $120^{\circ}C$.

  • PDF