• Title/Summary/Keyword: Surface Tension Gradient

Search Result 23, Processing Time 0.02 seconds

Three Dimensional FEM Simulation for Spinning of Non-circular Fibers

  • Kim, Heejae;Chung, Kwansoo;Youn, Jae-Ryoun
    • Fibers and Polymers
    • /
    • v.1 no.1
    • /
    • pp.37-44
    • /
    • 2000
  • A finite element method is employed fer a flow analysis of the melt spinning process of a non-circular fiber, a PET(polyethylene terephthalate) filament. The flow field is divided into two regions of die channel and spin-line. A two dimensional analysis is used for the flow within the die channel and a three dimensional analysis fur the flow along the spin-line. The Newtonian fluid is assumed for the PET melt and material properties are considered to be constant except for the viscosity. Effects of gravitation, air drag force, and surface tension are neglected. Although the spin-line length is 4.5 m only five millimeters from the spinneret are evaluated as the domain of the analysis. Isothermal and non-isothermal cases are studied fer the flow within the die channel. The relationship between the mass flow rate and the pressure gradient is presented for the two cases. Three dimensional flow along the spin-line is obtained by assuming isothermal conditions. It is shown that changes in velocity and cross-sectional shape occur mostly in the region of 1mm from the die exit.

  • PDF

Crack-tip Stress Field of Fully Circumferential Surface Cracked Pipe Under Combined Tension and Thermal Loads (원주방향 부분 관통 균열이 존재하는 직관에 인장하중과 열하중의 복합하중이 가해지는 경우의 균열 선단 응력장)

  • Je, Jin Ho;Kim, Dong Jun;Kim, Yun Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1207-1214
    • /
    • 2014
  • Under excessive plasticity, the fracture toughness of a material depends on its size and geometry. Under fully yielded conditions, the stresses in a material near its crack tip are not unique but rather depend on the geometry. Therefore, the single-parameter J-approach is limited to a high-constraint crack geometry. The JQ theory has been proposed for establishing the crack geometry constraints. This approach assumes that the crack-tip fields have two degrees of freedom. In this study, the crack-tip stress field of a fully circumferential surface-cracked pipe under combined loads is investigated on the basis of the JQ theory by using finite element analysis. The combined loads are a tensile axial force and the thermal gradient in the radial direction. Q-stresses of the crack geometry and its loading state are used to determine the constraint effects. The constraint effects of secondary loading are found to be greater than those of primary loading. Therefore, thermal shock is believed to be the most severe loading condition of constraint effects.

Failure Prediction for Weak Rock Slopes in a Large Open-pit Mine by GPS Measurements and Assessment of Landslide Susceptibility (대규모 노천광 연약암반 사면에서의 GPS 계측과 위험도평가에 의한 파괴예측)

  • SunWoo, Choon;Jung, Yong-Bok;Choi, Yo-Soon;Park, Hyeong-Dong
    • The Journal of Engineering Geology
    • /
    • v.20 no.3
    • /
    • pp.243-255
    • /
    • 2010
  • The slope design of an open-pit mine must consider economical efficiency and stability. Thus, the overall slope angle is the principal factor because of limited support or reinforcement options available in such a setting. In this study, slope displacement, as monitored by a GPS system, was analyzed for a coal mine at Pasir, Indonesia. Predictions of failure time by inverse velocity analysis showed good agreement with field observations. Therefore, the failure time of an unstable slope can be roughly estimated prior to failure. A GIS model that combines fuzzy theory and the analytical hierarchy process (AHP) was developed to assess slope instability in open-pit coal mines. This model simultaneously considers seven factors that influence the instability of open-pit slopes (i.e., overall slope gradient, slope height, surface flows, excavation plan, tension cracks, faults, and water body). Application of the proposed method to an open-pit coal mine revealed an enhanced prediction accuracy of failure time and failure site compared with existing methods.